count_lags(list_length, pool_items, recall_items)
count_lags
Count actual and possible serial position lags.
count_category(pool_items, recall_items, …)
count_category
Count within-category transitions.
count_distance(distances, edges, pool_items, …)
count_distance
Count transitions within distance bins.
percentile_rank(actual, possible)
percentile_rank
Get percentile rank of a score compared to possible scores.
rank_lags(pool_items, recall_items[, …])
rank_lags
Calculate rank of absolute lag for free recall lists.
rank_distance(distances, pool_items, …[, …])
rank_distance
Calculate percentile rank of transition distances.
outputs_masker(pool_items, recall_items, …)
outputs_masker
Iterate over valid outputs.
transitions_masker(pool_items, recall_items, …)
transitions_masker
Iterate over transitions with masking.
TransitionMeasure(items_key, label_key[, …])
TransitionMeasure
TransitionMeasure.split_lists(data, phase)
TransitionMeasure.split_lists
Get relevant fields and split by list.
TransitionMeasure.analyze(data)
TransitionMeasure.analyze
TransitionMeasure.analyze_subject(subject, …)
TransitionMeasure.analyze_subject
TransitionOutputs(list_length[, item_query, …])
TransitionOutputs
TransitionLag(list_length[, item_query, …])
TransitionLag
TransitionLagRank([item_query, test_key, test])
TransitionLagRank
TransitionCategory(category_key[, …])
TransitionCategory
TransitionDistance(index_key, distances, edges)
TransitionDistance
TransitionDistanceRank(index_key, distances)
TransitionDistanceRank