
Psifr
Release v0.8.2

Neal Morton

Sep 15, 2022

CONTENTS

1 Installation 3

2 User guide 5
2.1 Importing data . 5
2.2 Scoring data . 6
2.3 Recall performance . 8
2.4 Recall order . 11
2.5 Comparing conditions . 18

3 Tutorials 21

4 API reference 23
4.1 Free recall analysis . 23
4.2 Measures . 49
4.3 Transitions . 51
4.4 Outputs . 62

5 Development 65
5.1 Transitions . 65

6 References 69

Bibliography 71

Index 73

i

ii

Psifr, Release v0.8.2

In free recall, participants study a list of items and then name all of the items they can remember in any order they
choose. Many sophisticated analyses have been developed to analyze data from free recall experiments, but these
analyses are often complicated and difficult to implement.

Psifr leverages the Pandas data analysis package to make precise and flexible analysis of free recall data faster and
easier.

If you use Psifr, please cite the paper [Mor20].

See the code repository for version release notes.

CONTENTS 1

https://github.com/mortonne/psifr/releases

Psifr, Release v0.8.2

2 CONTENTS

CHAPTER

ONE

INSTALLATION

You can install the latest stable version of Psifr using pip:

pip install psifr

You can also install the development version directly from the code repository on GitHub:

pip install git+https://github.com/mortonne/psifr

3

Psifr, Release v0.8.2

4 Chapter 1. Installation

CHAPTER

TWO

USER GUIDE

2.1 Importing data

In Psifr, free recall data are imported in the form of a “long” format table. Each row corresponds to one study or recall
event. Study events include any time an item was presented to the participant. Recall events correspond to any recall
attempt; this includes repeats of items there were already recalled and intrusions of items that were not present in the
study list.

This type of information is well represented in a CSV spreadsheet, though any file format supported by pandas may be
used for input. To import from a CSV, use pandas.read_csv(). For example:

import pandas as pd
data = pd.read_csv("my_data.csv")

2.1.1 Trial information

The basic information that must be included for each event is the following:

subject
Some code (numeric or string) indicating individual participants. Must be unique for a given experiment. For
example, sub-101.

list
Numeric code indicating individual lists. Must be unique within subject.

trial_type
String indicating whether each event is a study event or a recall event.

position
Integer indicating position within a given phase of the list. For study events, this corresponds to input position
(also referred to as serial position). For recall events, this corresponds to output position.

item
Individual thing being recalled, such as a word. May be specified with text (e.g., pumpkin, Jack Nicholson)
or a numeric code (682, 121). Either way, the text or number must be unique to that item. Text is easier to read
and does not require any additional information for interpretation and is therefore preferred if available.

5

https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html#pandas.read_csv

Psifr, Release v0.8.2

2.1.2 Example

Table 1: Sample data
subject list trial_type position item
1 1 study 1 absence
1 1 study 2 hollow
1 1 study 3 pupil
1 1 recall 1 pupil
1 1 recall 2 absence

2.1.3 Additional information

Additional fields may be included in the data to indicate other aspects of the experiment, such as presentation time,
stimulus category, experimental session, distraction length, etc. All of these fields can then be used for analysis in Psifr.

2.2 Scoring data

After importing free recall data, we have a DataFrame with a row for each study event and a row for each recall event.
Next, we need to score the data by matching study events with recall events.

2.2.1 Scoring list recall

First, let’s create a simple sample dataset with two lists. We can use the table_from_lists() convenience function
to create a sample dataset with a given set of study lists and recalls:

In [1]: from psifr import fr

In [2]: list_subject = [1, 1]

In [3]: study_lists = [['absence', 'hollow', 'pupil'], ['fountain', 'piano', 'pillow']]

In [4]: recall_lists = [['pupil', 'absence', 'empty'], ['pillow', 'pupil', 'pillow']]

In [5]: data = fr.table_from_lists(list_subject, study_lists, recall_lists)

In [6]: data
Out[6]:

subject list trial_type position item
0 1 1 study 1 absence
1 1 1 study 2 hollow
2 1 1 study 3 pupil
3 1 1 recall 1 pupil
4 1 1 recall 2 absence
5 1 1 recall 3 empty
6 1 2 study 1 fountain
7 1 2 study 2 piano
8 1 2 study 3 pillow
9 1 2 recall 1 pillow

(continues on next page)

6 Chapter 2. User guide

Psifr, Release v0.8.2

(continued from previous page)

10 1 2 recall 2 pupil
11 1 2 recall 3 pillow

Next, we’ll merge together the study and recall events by matching up corresponding events using
merge_free_recall(). This scoring and merging step labels recall attempts in terms of whether they were
correct recalls, repeats, or intrusions. At the same time, it also labels study events in terms of whether they were
correctly recalled, and, if so, at which output position they were recalled. Free-recall analyses in Psifr are computed
from data in this “merged” format.

In [7]: merged = fr.merge_free_recall(data)

In [8]: merged
Out[8]:

subject list item input ... repeat intrusion prior_list prior_input
0 1 1 absence 1.0 ... 0 False NaN NaN
1 1 1 hollow 2.0 ... 0 False NaN NaN
2 1 1 pupil 3.0 ... 0 False NaN NaN
3 1 1 empty NaN ... 0 True NaN NaN
4 1 2 fountain 1.0 ... 0 False NaN NaN
5 1 2 piano 2.0 ... 0 False NaN NaN
6 1 2 pillow 3.0 ... 0 False NaN NaN
7 1 2 pillow 3.0 ... 1 False NaN NaN
8 1 2 pupil NaN ... 0 True 1.0 3.0

[9 rows x 11 columns]

For each item, there is one row for each unique combination of input and output position. For example, if an item is
presented once in the list, but is recalled multiple times, there is one row for each of the recall attempts. Repeated
recalls are indicated by the repeat column, which is greater than zero for recalls of an item after the first. Unique
study events are indicated by the study column; this excludes intrusions and repeated recalls.

Items that were not recalled have the recall column set to False. Because they were not recalled, they have no defined
output position, so output is set to NaN. Finally, intrusions have an output position but no input position because they
did not appear in the list. There is an intrusion field for convenience to label these recall attempts. The prior_list
and prior_input fields give information about prior-list intrusions (PLIs) of items from prior lists. The prior_list
field gives the list where the item appeared and prior_input indicates the position in which is was presented on that
list.

merge_free_recall() can also handle additional attributes beyond the standard ones, such as codes indicating stim-
ulus category or list condition. See Working with custom columns for details.

2.2.2 Filtering and sorting

Now that we have a merged DataFrame, we can use Pandas methods to quickly get different views of the data. For
some analyses, we may want to organize in terms of the study list by removing repeats and intrusions. Because our
data are in a DataFrame, we can use the query() method:

In [9]: merged.query('study')
Out[9]:

subject list item input ... repeat intrusion prior_list prior_input
0 1 1 absence 1.0 ... 0 False NaN NaN
1 1 1 hollow 2.0 ... 0 False NaN NaN

(continues on next page)

2.2. Scoring data 7

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.query.html#pandas.DataFrame.query

Psifr, Release v0.8.2

(continued from previous page)

2 1 1 pupil 3.0 ... 0 False NaN NaN
4 1 2 fountain 1.0 ... 0 False NaN NaN
5 1 2 piano 2.0 ... 0 False NaN NaN
6 1 2 pillow 3.0 ... 0 False NaN NaN

[6 rows x 11 columns]

Alternatively, we may also want to get just the recall events, sorted by output position instead of input position:

In [10]: merged.query('recall').sort_values(['list', 'output'])
Out[10]:

subject list item input ... repeat intrusion prior_list prior_input
2 1 1 pupil 3.0 ... 0 False NaN NaN
0 1 1 absence 1.0 ... 0 False NaN NaN
3 1 1 empty NaN ... 0 True NaN NaN
6 1 2 pillow 3.0 ... 0 False NaN NaN
8 1 2 pupil NaN ... 0 True 1.0 3.0
7 1 2 pillow 3.0 ... 1 False NaN NaN

[6 rows x 11 columns]

Note that we first sort by list, then output position, to keep the lists together.

In addition to using the query()method directly, we can also use filter_data() to get subsets of data. For example,
to get the first list only:

In [11]: fr.filter_data(merged, lists=1)
Out[11]:

subject list item input ... repeat intrusion prior_list prior_input
0 1 1 absence 1.0 ... 0 False NaN NaN
1 1 1 hollow 2.0 ... 0 False NaN NaN
2 1 1 pupil 3.0 ... 0 False NaN NaN
3 1 1 empty NaN ... 0 True NaN NaN

[4 rows x 11 columns]

2.3 Recall performance

First, load some sample data and create a merged DataFrame:

In [1]: from psifr import fr

In [2]: df = fr.sample_data('Morton2013')

In [3]: data = fr.merge_free_recall(df)

8 Chapter 2. User guide

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.query.html#pandas.DataFrame.query

Psifr, Release v0.8.2

2.3.1 Raster plot

Raster plots can give you a quick overview of a whole dataset [RKT16]. We’ll look at all of the first subject’s recalls
using plot_raster(). This will plot every individual recall, colored by the serial position of the recalled item in the
list. Items near the end of the list are shown in yellow, and items near the beginning of the list are shown in purple.
Intrusions of items not on the list are shown in red.

In [4]: subj = fr.filter_data(data, 1)

In [5]: g = fr.plot_raster(subj).add_legend()

2.3.2 Serial position curve

We can calculate average recall for each serial position [Mur62] using spc() and plot using plot_spc().

In [6]: recall = fr.spc(data)

In [7]: g = fr.plot_spc(recall)

Using the same plotting function, we can plot the curve for each individual subject:

In [8]: g = fr.plot_spc(recall, col='subject', col_wrap=5)

2.3.3 Probability of Nth recall

We can also split up recalls, to test for example how likely participants were to initiate recall with the last item on the
list, using pnr().

In [9]: prob = fr.pnr(data)

In [10]: prob
Out[10]:

prob actual possible
subject output input
1 1 1 0.000000 0 48

2 0.020833 1 48
3 0.000000 0 48
4 0.000000 0 48
5 0.000000 0 48

...
47 24 20 NaN 0 0

21 NaN 0 0
22 NaN 0 0
23 NaN 0 0
24 NaN 0 0

[23040 rows x 3 columns]

2.3. Recall performance 9

Psifr, Release v0.8.2

This gives us the probability of recall by output position ('output') and serial or input position ('input'). This is a
lot to look at all at once, so it may be useful to plot just the first three output positions. We can plot the curves using
plot_spc(), which takes an optional hue input to specify a variable to use to split the data into curves of different
colors.

In [11]: pfr = prob.query('output <= 3')

In [12]: g = fr.plot_spc(pfr, hue='output').add_legend()

This plot shows what items tend to be recalled early in the recall sequence.

2.3.4 Prior-list intrusions

Participants will sometimes accidentally recall items from prior lists; these recalls are known as prior-list intrusions
(PLIs). To better understand how prior-list intrusions are happening, you can look at how many lists back those items
were originally presented using pli_list_lag().

First, you need to choose a maximum list lag that you will consider. This determines which lists will be included in the
analysis. For example, if you have a maximum lag of 3, then the first 3 lists will be excluded from the analysis. This
ensures that each included list can potentially have intrusions of each possible list lag.

In [13]: pli = fr.pli_list_lag(data, max_lag=3)

In [14]: pli
Out[14]:

count per_list prob
subject list_lag
1 1 7 0.155556 0.259259

2 5 0.111111 0.185185
3 0 0.000000 0.000000

2 1 9 0.200000 0.191489
2 2 0.044444 0.042553

...
46 2 1 0.022222 0.100000

3 0 0.000000 0.000000
47 1 5 0.111111 0.277778

2 1 0.022222 0.055556
3 0 0.000000 0.000000

[120 rows x 3 columns]

In [15]: pli.groupby('list_lag').agg(['mean', 'sem'])
Out[15]:

count per_list prob
mean sem mean sem mean sem

list_lag
1 5.55 0.547664 0.123333 0.012170 0.210631 0.014726
2 1.35 0.230801 0.030000 0.005129 0.043458 0.007032
3 0.75 0.174496 0.016667 0.003878 0.023385 0.005602

The analysis returns a raw count of intrusions at each lag (count), the count divided by the number of included lists
(per_list), and the probability of a given intrusion coming from a given lag (prob). In the sample dataset, recently
presented items (i.e., with lower list lag) are more likely to be intruded.

10 Chapter 2. User guide

Psifr, Release v0.8.2

2.4 Recall order

A key advantage of free recall is that it provides information not only about what items are recalled, but also the order
in which they are recalled. A number of analyses have been developed to charactize different influences on recall order,
such as the temporal order in which the items were presented at study, the category of the items themselves, or the
semantic similarity between pairs of items.

Each conditional response probability (CRP) analysis involves calculating the probability of some type of transition
event. For the lag-CRP analysis, transition events of interest are the different lags between serial positions of items
recalled adjacent to one another. Similar analyses focus not on the serial position in which items are presented, but the
properties of the items themselves. A semantic-CRP analysis calculates the probability of transitions between items in
different semantic relatedness bins. A special case of this analysis is when item pairs are placed into one of two bins,
depending on whether they are in the same stimulus category or not. In Psifr, this is referred to as a category-CRP
analysis.

2.4.1 Lag-CRP

In all CRP analyses, transition probabilities are calculated conditional on a given transition being available [Kah96].
For example, in a six-item list, if the items 6, 1, and 4 have been recalled, then possible items that could have been
recalled next are 2, 3, or 5; therefore, possible lags at that point in the recall sequence are -2, -1, or +1. The number of
actual transitions observed for each lag is divided by the number of times that lag was possible, to obtain the CRP for
each lag.

First, load some sample data and create a merged DataFrame:

In [1]: from psifr import fr

In [2]: df = fr.sample_data('Morton2013')

In [3]: data = fr.merge_free_recall(df, study_keys=['category'])

Next, call lag_crp() to calculate conditional response probability as a function of lag.

In [4]: crp = fr.lag_crp(data)

In [5]: crp
Out[5]:

prob actual possible
subject lag
1 -23.0 0.020833 1 48

-22.0 0.035714 3 84
-21.0 0.026316 3 114
-20.0 0.024000 3 125
-19.0 0.014388 2 139

...
47 19.0 0.061224 3 49

20.0 0.055556 2 36
21.0 0.045455 1 22
22.0 0.071429 1 14
23.0 0.000000 0 6

[1880 rows x 3 columns]

2.4. Recall order 11

Psifr, Release v0.8.2

The results show the count of times a given transition actually happened in the observed recall sequences (actual)
and the number of times a transition could have occurred (possible). Finally, the prob column gives the estimated
probability of a given transition occurring, calculated by dividing the actual count by the possible count.

Use plot_lag_crp() to display the results:

In [6]: g = fr.plot_lag_crp(crp)

The peaks at small lags (e.g., +1 and -1) indicate that the recall sequences show evidence of a temporal contiguity
effect; that is, items presented near to one another in the list are more likely to be recalled successively than items that
are distant from one another in the list.

2.4.2 Compound lag-CRP

The compound lag-CRP was developed to measure how temporal clustering changes as a result of prior clustering
during recall [LK14]. They found evidence that temporal clustering is greater immediately after transitions with short
lags compared to long lags. The lag_crp_compound() analysis calculates conditional response probability by lag,
but with the additional condition of the lag of the previous transition.

In [7]: crp = fr.lag_crp_compound(data)

In [8]: crp
Out[8]:

prob actual possible
subject previous current
1 -23.0 -23.0 NaN 0 0

-22.0 NaN 0 0
-21.0 NaN 0 0
-20.0 NaN 0 0
-19.0 NaN 0 0

...
47 23.0 19.0 NaN 0 0

20.0 NaN 0 0
21.0 NaN 0 0
22.0 NaN 0 0
23.0 NaN 0 0

[88360 rows x 3 columns]

The results show conditional response probabilities as in the standard lag-CRP analysis, but with two lag columns:
previous (the lag of the prior transition) and current (the lag of the current transition).

This is a lot of information, and the sample size for many bins is very small. Following [LK14], we can apply bins to
the lag of the previous transition to increase the sample size in each bin. We first sum the actual and possible transition
counts, and then calculate the probability of each of the new bins.

In [9]: binned = crp.reset_index()

In [10]: binned.loc[binned['previous'].abs() > 3, 'Previous'] = '|Lag|>3'

In [11]: binned.loc[binned['previous'] == 1, 'Previous'] = 'Lag=+1'

(continues on next page)

12 Chapter 2. User guide

Psifr, Release v0.8.2

(continued from previous page)

In [12]: binned.loc[binned['previous'] == -1, 'Previous'] = 'Lag=-1'

In [13]: summed = binned.groupby(['subject', 'Previous', 'current'])[['actual', 'possible
→˓']].sum()

In [14]: summed['prob'] = summed['actual'] / summed['possible']

In [15]: summed
Out[15]:

actual possible prob
subject Previous current
1 Lag=+1 -23.0 0 2 0.000000

-22.0 0 2 0.000000
-21.0 0 4 0.000000
-20.0 0 6 0.000000
-19.0 1 7 0.142857

...
47 |Lag|>3 19.0 1 30 0.033333

20.0 2 19 0.105263
21.0 1 14 0.071429
22.0 0 7 0.000000
23.0 0 2 0.000000

[5640 rows x 3 columns]

We can then plot the compound lag-CRP using the standard plot_lag_crp() plotting function.

In [16]: g = fr.plot_lag_crp(summed, lag_key='current', hue='Previous').add_legend()

Note that some lags are considered impossible as they would require a repeat of a previously recalled item (e.g., a +1 lag
followed by a -1 lag is not possible). For both of the adjacent conditions (+1 and -1), the lag-CRP is sharper compared
to the long-lag condition (|lag| > 3). This suggests that there is compound temporal clustering.

2.4.3 Lag rank

We can summarize the tendency to group together nearby items by running a lag rank analysis [PNK09] using
lag_rank(). For each recall, this determines the absolute lag of all remaining items available for recall and then
calculates their percentile rank. Then the rank of the actual transition made is taken, scaled to vary between 0 (furthest
item chosen) and 1 (nearest item chosen). Chance clustering will be 0.5; clustering above that value is evidence of a
temporal contiguity effect.

In [17]: ranks = fr.lag_rank(data)

In [18]: ranks
Out[18]:

rank
subject
1 0.610953
2 0.635676
3 0.612607

(continues on next page)

2.4. Recall order 13

Psifr, Release v0.8.2

(continued from previous page)

4 0.667090
5 0.643923
... ...
43 0.554024
44 0.561005
45 0.598151
46 0.652748
47 0.621245

[40 rows x 1 columns]

In [19]: ranks.agg(['mean', 'sem'])
Out[19]:

rank
mean 0.624699
sem 0.006732

2.4.4 Category CRP

If there are multiple categories or conditions of trials in a list, we can test whether participants tend to successively
recall items from the same category. The category-CRP, calculated using category_crp(), estimates the probability
of successively recalling two items from the same category [PNK09].

In [20]: cat_crp = fr.category_crp(data, category_key='category')

In [21]: cat_crp
Out[21]:

prob actual possible
subject
1 0.801147 419 523
2 0.733456 399 544
3 0.763158 377 494
4 0.814882 449 551
5 0.877273 579 660
...
43 0.809187 458 566
44 0.744376 364 489
45 0.763780 388 508
46 0.763573 436 571
47 0.806907 514 637

[40 rows x 3 columns]

In [22]: cat_crp[['prob']].agg(['mean', 'sem'])
Out[22]:

prob
mean 0.782693
sem 0.006262

The expected probability due to chance depends on the number of categories in the list. In this case, there are three
categories, so a category CRP of 0.33 would be predicted if recalls were sampled randomly from the list.

14 Chapter 2. User guide

Psifr, Release v0.8.2

2.4.5 Category clustering

A number of measures have been developed to measure category clustering relative to that expected due to chance, under
certain assumptions. Two such measures are list-based clustering (LBC) [SBW+02] and adjusted ratio of clustering
(ARC) [RTB71].

These measures can be calculated using the category_clustering() function.

In [23]: clust = fr.category_clustering(data, category_key='category')

In [24]: clust.agg(['mean', 'sem'])
Out[24]:

lbc arc
mean 2.409398 0.608763
sem 0.127651 0.016809

Both measures are defined such that positive values indicate above-chance clustering. ARC scores have a maximum of
1, while the upper bound of LBC scores depends on the number of categories and the number of items per category in
the study list.

2.4.6 Distance CRP

While the category CRP examines clustering based on semantic similarity at a coarse level (i.e., whether two items are
in the same category or not), recall may also depend on more nuanced semantic relationships.

Models of semantic knowledge allow the semantic distance between pairs of items to be quantified. If you have such a
model defined for your stimulus pool, you can use the distance CRP analysis to examine how semantic distance affects
recall transitions [HK02, MP16].

You must first define distances between pairs of items. Here, we use correlation distances based on the wiki2USE
model.

In [25]: items, distances = fr.sample_distances('Morton2013')

We also need a column indicating the index of each item in the distances matrix. We use pool_index() to create a
new column called item_index with the index of each item in the pool corresponding to the distances matrix.

In [26]: data['item_index'] = fr.pool_index(data['item'], items)

Finally, we must define distance bins. Here, we use 10 bins with equally spaced distance percentiles. Note that, when
calculating distance percentiles, we use the squareform() function to get only the non-diagonal entries.

In [27]: from scipy.spatial.distance import squareform

In [28]: edges = np.percentile(squareform(distances), np.linspace(1, 99, 10))

We can now calculate conditional response probability as a function of distance bin using distance_crp(), to examine
how response probability varies with semantic distance.

In [29]: dist_crp = fr.distance_crp(data, 'item_index', distances, edges)

In [30]: dist_crp
Out[30]:

bin prob actual possible
subject center

(continues on next page)

2.4. Recall order 15

https://scipy.github.io/devdocs/reference/generated/scipy.spatial.distance.squareform.html#scipy.spatial.distance.squareform

Psifr, Release v0.8.2

(continued from previous page)

1 0.467532 (0.352, 0.583] 0.085456 151 1767
0.617748 (0.583, 0.653] 0.067916 87 1281
0.673656 (0.653, 0.695] 0.062500 65 1040
0.711075 (0.695, 0.727] 0.051836 48 926
0.742069 (0.727, 0.757] 0.050633 44 869

...
47 0.742069 (0.727, 0.757] 0.062822 61 971

0.770867 (0.757, 0.785] 0.030682 27 880
0.800404 (0.785, 0.816] 0.040749 37 908
0.834473 (0.816, 0.853] 0.046651 39 836
0.897275 (0.853, 0.941] 0.028868 25 866

[360 rows x 4 columns]

Use plot_distance_crp() to display the results:

In [31]: g = fr.plot_distance_crp(dist_crp).set(ylim=(0, 0.1))

Conditional response probability decreases with increasing semantic distance, suggesting that recall order was influ-
enced by the semantic similarity between items. Of course, a complete analysis should address potential confounds such
as the category structure of the list. See the Restricting analysis to specific items section for an example of restricting
analysis based on category.

2.4.7 Distance rank

Similarly to the lag rank analysis of temporal clustering, we can summarize distance-based clustering (such as semantic
clustering) with a single rank measure [PNK09]. The distance rank varies from 0 (the most-distant item is always
recalled) to 1 (the closest item is always recalled), with chance clustering corresponding to 0.5. Given a matrix of item
distances, we can calculate distance rank using distance_rank().

In [32]: dist_rank = fr.distance_rank(data, 'item_index', distances)

In [33]: dist_rank.agg(['mean', 'sem'])
Out[33]:

rank
mean 0.625932
sem 0.003466

2.4.8 Distance rank shifted

Like with the compound lag-CRP, we can also examine how recalls before the just-previous one may predict subsequent
recalls. To examine whether distances relative to earlier items are predictive of the next recall, we can use a shifted
distance rank analysis [MP16] using distance_rank_shifted().

Here, to account for the category structure of the list, we will only include within-category transitions (see the Restrict-
ing analysis to specific items section for details).

In [34]: ranks = fr.distance_rank_shifted(
....: data, 'item_index', distances, 4, test_key='category', test=lambda x, y: x␣

(continues on next page)

16 Chapter 2. User guide

Psifr, Release v0.8.2

(continued from previous page)

→˓== y
....:)
....:

In [35]: ranks
Out[35]:

rank
subject shift
1 -4 0.518617

-3 0.492103
-2 0.516063
-1 0.579198

2 -4 0.463931
... ...
46 -1 0.581420
47 -4 0.504383

-3 0.526840
-2 0.504953
-1 0.586689

[160 rows x 1 columns]

The distance rank is returned for each shift. The -1 shift is the same as the standard distance rank analysis. We can
visualize how distance rank changes with shift using seaborn.relplot().

In [36]: g = sns.relplot(
....: data=ranks.reset_index(), x='shift', y='rank', kind='line', height=3
....:).set(xlabel='Output lag', ylabel='Distance rank', xticks=[-4, -3, -2, -1])
....:

2.4.9 Restricting analysis to specific items

Sometimes you may want to focus an analysis on a subset of recalls. For example, in order to exclude the period of
high clustering commonly observed at the start of recall, lag-CRP analyses are sometimes restricted to transitions after
the first three output positions.

You can restrict the recalls included in a transition analysis using the optional item_query argument. This is built
on the Pandas query/eval system, which makes it possible to select rows of a DataFrame using a query string. This
string can refer to any column in the data. Any items for which the expression evaluates to True will be included in
the analysis.

For example, we can use the item_query argument to exclude any items recalled in the first three output positions
from analysis. Note that, because non-recalled items have no output position, we need to include them explicitly using
output > 3 or not recall.

In [37]: crp_op3 = fr.lag_crp(data, item_query='output > 3 or not recall')

In [38]: g = fr.plot_lag_crp(crp_op3)

2.4. Recall order 17

https://seaborn.pydata.org/generated/seaborn.relplot.html#seaborn.relplot

Psifr, Release v0.8.2

2.4.10 Restricting analysis to specific transitions

In other cases, you may want to focus an analysis on a subset of transitions based on some criteria. For example,
if a list contains items from different categories, it is a good idea to take this into account when measuring temporal
clustering using a lag-CRP analysis [MP17, PEK11]. One approach is to separately analyze within- and across-category
transitions.

Transitions can be selected for inclusion using the optional test_key and test inputs. The test_key indicates a
column of the data to use for testing transitions; for example, here we will use the category column. The test input
should be a function that takes in the test value of the previous recall and the current recall and returns True or False
to indicate whether that transition should be included. Here, we will use a lambda (anonymous) function to define the
test.

In [39]: crp_within = fr.lag_crp(data, test_key='category', test=lambda x, y: x == y)

In [40]: crp_across = fr.lag_crp(data, test_key='category', test=lambda x, y: x != y)

In [41]: crp_combined = pd.concat([crp_within, crp_across], keys=['within', 'across'],␣
→˓axis=0)

In [42]: crp_combined.index.set_names('transition', level=0, inplace=True)

In [43]: g = fr.plot_lag_crp(crp_combined, hue='transition').add_legend()

The within curve shows the lag-CRP for transitions between items of the same category, while the across curve
shows transitions between items of different categories.

2.5 Comparing conditions

When analyzing a dataset, it’s often important to compare different experimental conditions. Psifr is built on the Pandas
DataFrame, which has powerful ways of splitting data and applying operations to it. This makes it possible to analyze
and plot different conditions using very little code.

2.5.1 Working with custom columns

First, load some sample data and create a merged DataFrame:

In [1]: from psifr import fr

In [2]: df = fr.sample_data('Morton2013')

In [3]: data = fr.merge_free_recall(
...: df, study_keys=['category'], list_keys=['list_type']
...:)
...:

In [4]: data.head()
Out[4]:

subject list item input ... list_type category prior_list prior_input
0 1 1 TOWEL 1.0 ... pure obj NaN NaN

(continues on next page)

18 Chapter 2. User guide

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

Psifr, Release v0.8.2

(continued from previous page)

1 1 1 LADLE 2.0 ... pure obj NaN NaN
2 1 1 THERMOS 3.0 ... pure obj NaN NaN
3 1 1 LEGO 4.0 ... pure obj NaN NaN
4 1 1 BACKPACK 5.0 ... pure obj NaN NaN

[5 rows x 13 columns]

The merge_free_recall() function only includes columns from the raw data if they are one of the standard columns
or if they’ve explictly been included using study_keys, recall_keys, or list_keys. list_keys apply to all events
in a list, while study_keys and recall_keys are relevant only for study and recall events, respectively.

We’ve included a list key here, to indicate that the list_type field should be included for all study and recall events
in each list, even intrusions. The category field will be included for all study events and all valid recalls. Intrusions
will have an undefined category.

2.5.2 Analysis by condition

Now we can run any analysis separately for the different conditions. We’ll use the serial position curve analysis as an
example.

In [5]: spc = data.groupby('list_type').apply(fr.spc)

In [6]: spc.head()
Out[6]:

recall
list_type subject input
mixed 1 1.0 0.500000

2.0 0.466667
3.0 0.600000
4.0 0.300000
5.0 0.333333

The spc DataFrame has separate groups with the results for each list_type.

Warning: When using groupby with order-based analyses like lag_crp(), make sure all recalls in all recall
sequences for a given list have the same label. Otherwise, you will be breaking up recall sequences, which could
result in an invalid analysis.

2.5.3 Plotting by condition

We can then plot a separate curve for each condition. All plotting functions take optional hue, col, col_wrap, and
row inputs that can be used to divide up data when plotting. Most inputs to seaborn.relplot() are supported.

For example, we can plot two curves for the different list types:

In [7]: g = fr.plot_spc(spc, hue='list_type').add_legend()

We can also plot the curves in different axes using the col option:

2.5. Comparing conditions 19

https://seaborn.pydata.org/generated/seaborn.relplot.html#seaborn.relplot

Psifr, Release v0.8.2

In [8]: g = fr.plot_spc(spc, col='list_type')

We can also plot all combinations of two conditions:

In [9]: spc_split = data.groupby(['list_type', 'category']).apply(fr.spc)

In [10]: g = fr.plot_spc(spc_split, col='list_type', row='category')

2.5.4 Plotting by subject

All analyses can be plotted separately by subject. A nice way to do this is using the col and col_wrap optional inputs,
to make a grid of plots with 6 columns per row:

In [11]: g = fr.plot_spc(
....: spc, hue='list_type', col='subject', col_wrap=6, height=2
....:).add_legend()
....:

20 Chapter 2. User guide

CHAPTER

THREE

TUTORIALS

See the psifr-notebooks project for a set of Jupyter notebooks with sample code. These examples go more in depth into
the options available for each analysis and how they can be used for advanced analyses such as conditionalizing CRP
analysis on specific transitions.

21

https://github.com/mortonne/psifr-notebooks

Psifr, Release v0.8.2

22 Chapter 3. Tutorials

CHAPTER

FOUR

API REFERENCE

4.1 Free recall analysis

4.1.1 Managing data

table_from_lists(subjects, study, recall[, ...]) Create table format data from list format data.
check_data(df) Run checks on free recall data.
merge_free_recall(data, **kwargs) Score free recall data by matching up study and recall

events.
merge_lists(study, recall[, merge_keys, ...]) Merge study and recall events together for each list.
filter_data(data[, subjects, lists, ...]) Filter data to get a subset of trials.
reset_list(df) Reset list index in a DataFrame.
split_lists(frame, phase[, keys, names, ...]) Convert free recall data from one phase to split format.
pool_index(trial_items, pool_items_list) Get the index of each item in the full pool.
block_index(list_labels) Get index of each block in a list.

psifr.fr.table_from_lists

psifr.fr.table_from_lists(subjects, study, recall, lists=None, **kwargs)
Create table format data from list format data.

Parameters

• subjects (list of hashable) – Subject identifier for each list.

• study (list of list of hashable) – List of items for each study list.

• recall (list of list of hashable) – List of recalled items for each study list.

• lists (list of hashable, optional) – List of list numbers. If not specified, lists for
each subject will be numbered sequentially starting from one.

Returns
data – Data in table format.

Return type
pandas.DataFrame

See also:

split_lists
Split a table into list format.

23

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

Psifr, Release v0.8.2

Examples

>>> from psifr import fr
>>> subjects_list = [1, 1, 2, 2]
>>> study_lists = [['a', 'b'], ['c', 'd'], ['e', 'f'], ['g', 'h']]
>>> recall_lists = [['b'], ['d', 'c'], ['f', 'e'], []]
>>> fr.table_from_lists(subjects_list, study_lists, recall_lists)

subject list trial_type position item
0 1 1 study 1 a
1 1 1 study 2 b
2 1 1 recall 1 b
3 1 2 study 1 c
4 1 2 study 2 d
5 1 2 recall 1 d
6 1 2 recall 2 c
7 2 1 study 1 e
8 2 1 study 2 f
9 2 1 recall 1 f
10 2 1 recall 2 e
11 2 2 study 1 g
12 2 2 study 2 h

>>> subjects_list = [1, 1]
>>> study_lists = [['a', 'b'], ['c', 'd']]
>>> recall_lists = [['b'], ['d', 'c']]
>>> col1 = ([[1, 2], [1, 2]], [[2], [2, 1]])
>>> col2 = ([[1, 1], [2, 2]], None)
>>> fr.table_from_lists(subjects_list, study_lists, recall_lists, col1=col1,␣
→˓col2=col2)

subject list trial_type position item col1 col2
0 1 1 study 1 a 1 1.0
1 1 1 study 2 b 2 1.0
2 1 1 recall 1 b 2 NaN
3 1 2 study 1 c 1 2.0
4 1 2 study 2 d 2 2.0
5 1 2 recall 1 d 2 NaN
6 1 2 recall 2 c 1 NaN

psifr.fr.check_data

psifr.fr.check_data(df)
Run checks on free recall data.

Parameters
df (pandas.DataFrame) –

Contains one row for each trial (study and recall). Must have fields:

subject
[number or str] Subject identifier.

list
[number] List identifier. This applies to both study and recall trials.

24 Chapter 4. API reference

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

Psifr, Release v0.8.2

trial_type
[str] Type of trial; may be ‘study’ or ‘recall’.

position
[number] Position within the study list or recall sequence.

item
[str] Item that was either presented or recalled on this trial.

Examples

>>> from psifr import fr
>>> import pandas as pd
>>> raw = pd.DataFrame(
... {'subject': [1, 1], 'list': [1, 1], 'position': [1, 2], 'item': ['a', 'b']}
...)
>>> fr.check_data(raw)
Traceback (most recent call last):
File "psifr/fr.py", line 253, in check_data
assert col in df.columns, f'Required column {col} is missing.'

AssertionError: Required column trial_type is missing.

psifr.fr.merge_free_recall

psifr.fr.merge_free_recall(data, **kwargs)
Score free recall data by matching up study and recall events.

Parameters

• data (pandas.DataFrame) – Free recall data in Psifr format. Must have subject, list,
trial_type, position, and item columns.

• merge_keys (list, optional) – Columns to use to designate events to merge. Default
is [‘subject’, ‘list’, ‘item’], which will merge events related to the same item, but only within
list.

• list_keys (list, optional) – Columns that apply to both study and recall events.

• study_keys (list, optional) – Columns that only apply to study events.

• recall_keys (list, optional) – Columns that only apply to recall events.

• position_key (str, optional) – Column indicating the position of each item in either
the study list or the recall sequence.

Returns

merged – Merged information about study and recall events. Each row corresponds to one unique
input/output pair.

The following columns will be added:

input
[int] Position of each item in the input list (i.e., serial position).

output
[int] Position of each item in the recall sequence.

4.1. Free recall analysis 25

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Psifr, Release v0.8.2

study
[bool] True for rows corresponding to a unique study event.

recall
[bool] True for rows corresponding to a unique recall event.

repeat
[int] Number of times this recall event has been repeated (0 for the first recall of an item).

intrusion
[bool] True for recalls that do not correspond to any study event.

prior_list
[int] For prior-list intrusions, the list the item was presented.

prior_position
[int] For prior-list intrusions, the position the item was presented.

Return type
pandas.DataFrame

See also:

merge_lists
Flexibly merge study events with recall events. Useful for recall phases that don’t match the typical free
recall setup, like final free recall of all lists.

Examples

>>> import numpy as np
>>> from psifr import fr
>>> study = [['absence', 'hollow'], ['fountain', 'piano']]
>>> recall = [['absence'], ['piano', 'hollow']]
>>> raw = fr.table_from_lists([1, 1], study, recall)
>>> raw

subject list trial_type position item
0 1 1 study 1 absence
1 1 1 study 2 hollow
2 1 1 recall 1 absence
3 1 2 study 1 fountain
4 1 2 study 2 piano
5 1 2 recall 1 piano
6 1 2 recall 2 hollow

Score the data to create a table with matched study and recall events.

>>> data = fr.merge_free_recall(raw)
>>> data

subject list item input output study recall repeat intrusion prior_
→˓list prior_input
0 1 1 absence 1.0 1.0 True True 0 False ␣
→˓NaN NaN
1 1 1 hollow 2.0 NaN True False 0 False ␣
→˓NaN NaN
2 1 2 fountain 1.0 NaN True False 0 False ␣
→˓NaN NaN

(continues on next page)

26 Chapter 4. API reference

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

Psifr, Release v0.8.2

(continued from previous page)

3 1 2 piano 2.0 1.0 True True 0 False ␣
→˓NaN NaN
4 1 2 hollow NaN 2.0 False True 0 True ␣
→˓1.0 2.0

You can also include non-standard columns. Information that only applies to study events (here, the encoding
task used) can be indicated using the study_keys input.

>>> raw['task'] = np.array([1, 2, np.nan, 2, 1, np.nan, np.nan])
>>> fr.merge_free_recall(raw, study_keys=['task'])

subject list item input output study recall repeat intrusion task ␣
→˓prior_list prior_input
0 1 1 absence 1.0 1.0 True True 0 False 1.0 ␣
→˓ NaN NaN
1 1 1 hollow 2.0 NaN True False 0 False 2.0 ␣
→˓ NaN NaN
2 1 2 fountain 1.0 NaN True False 0 False 2.0 ␣
→˓ NaN NaN
3 1 2 piano 2.0 1.0 True True 0 False 1.0 ␣
→˓ NaN NaN
4 1 2 hollow NaN 2.0 False True 0 True NaN ␣
→˓ 1.0 2.0

Information that only applies to recall onsets (here, the time in seconds after the start of the recall phase that a
recall attempt was made), can be indicated using the recall_keys input.

>>> raw['onset'] = np.array([np.nan, np.nan, 1.1, np.nan, np.nan, 1.4, 3.8])
>>> fr.merge_free_recall(raw, recall_keys=['onset'])

subject list item input output study recall repeat intrusion onset ␣
→˓prior_list prior_input
0 1 1 absence 1.0 1.0 True True 0 False 1.1 ␣
→˓ NaN NaN
1 1 1 hollow 2.0 NaN True False 0 False NaN ␣
→˓ NaN NaN
2 1 2 fountain 1.0 NaN True False 0 False NaN ␣
→˓ NaN NaN
3 1 2 piano 2.0 1.0 True True 0 False 1.4 ␣
→˓ NaN NaN
4 1 2 hollow NaN 2.0 False True 0 True 3.8 ␣
→˓ 1.0 2.0

Use list_keys to indicate columns that apply to both study and recall events. If list_keys do not match for
a pair of study and recall events, they will not be matched in the output.

>>> raw['condition'] = np.array([1, 1, 1, 2, 2, 2, 2])
>>> fr.merge_free_recall(raw, list_keys=['condition'])

subject list item input output study recall repeat intrusion ␣
→˓condition prior_list prior_input
0 1 1 absence 1.0 1.0 True True 0 False ␣
→˓ 1 NaN NaN
1 1 1 hollow 2.0 NaN True False 0 False ␣
→˓ 1 NaN NaN
2 1 2 fountain 1.0 NaN True False 0 False ␣

(continues on next page)

4.1. Free recall analysis 27

Psifr, Release v0.8.2

(continued from previous page)

→˓ 2 NaN NaN
3 1 2 piano 2.0 1.0 True True 0 False ␣
→˓ 2 NaN NaN
4 1 2 hollow NaN 2.0 False True 0 True ␣
→˓ 2 1.0 2.0

psifr.fr.merge_lists

psifr.fr.merge_lists(study, recall, merge_keys=None, list_keys=None, study_keys=None, recall_keys=None,
position_key='position')

Merge study and recall events together for each list.

Parameters

• study (pandas.DataFrame) – Information about all study events. Should have one row for
each study event.

• recall (pandas.DataFrame) – Information about all recall events. Should have one row
for each recall attempt.

• merge_keys (list, optional) – Columns to use to designate events to merge. Default
is [‘subject’, ‘list’, ‘item’], which will merge events related to the same item, but only within
list.

• list_keys (list, optional) – Columns that apply to both study and recall events.

• study_keys (list, optional) – Columns that only apply to study events.

• recall_keys (list, optional) – Columns that only apply to recall events.

• position_key (str, optional) – Column indicating the position of each item in either
the study list or the recall sequence.

Returns

merged – Merged information about study and recall events. Each row corresponds to one unique
input/output pair.

The following columns will be added:

input
[int] Position of each item in the input list (i.e., serial position).

output
[int] Position of each item in the recall sequence.

study
[bool] True for rows corresponding to a unique study event.

recall
[bool] True for rows corresponding to a unique recall event.

repeat
[int] Number of times this recall event has been repeated (0 for the first recall of an item).

intrusion
[bool] True for recalls that do not correspond to any study event.

Return type
pandas.DataFrame

28 Chapter 4. API reference

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

Psifr, Release v0.8.2

See also:

merge_free_recall
Score standard free recall data.

Examples

>>> import pandas as pd
>>> from psifr import fr
>>> study = pd.DataFrame(
... {'subject': [1, 1], 'list': [1, 1], 'position': [1, 2], 'item': ['a', 'b']}
...)
>>> recall = pd.DataFrame(
... {'subject': [1], 'list': [1], 'position': [1], 'item': ['b']}
...)
>>> fr.merge_lists(study, recall)

subject list item input output study recall repeat intrusion
0 1 1 a 1 NaN True False 0 False
1 1 1 b 2 1.0 True True 0 False

psifr.fr.filter_data

psifr.fr.filter_data(data, subjects=None, lists=None, trial_type=None, positions=None, inputs=None,
outputs=None)

Filter data to get a subset of trials.

Parameters

• data (pandas.DataFrame) – Raw or merged data to filter.

• subjects (hashable or list of hashable) – Subject or subjects to include.

• lists (hashable or list of hashable) – List or lists to include.

• trial_type ({'study', 'recall'}) – Trial type to include.

• positions (int or list of int) – Position or positions to include.

• inputs (int or list of int) – Input position or positions to include.

• outputs (int or list of int) – Output position or positions to include.

Returns
filtered – The filtered subset of data.

Return type
pandas.DataFrame

4.1. Free recall analysis 29

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

Psifr, Release v0.8.2

Examples

>>> from psifr import fr
>>> subjects_list = [1, 1, 2, 2]
>>> study_lists = [['a', 'b'], ['c', 'd'], ['e', 'f'], ['g', 'h']]
>>> recall_lists = [['b'], ['d', 'c'], ['f', 'e'], []]
>>> raw = fr.table_from_lists(subjects_list, study_lists, recall_lists)
>>> fr.filter_data(raw, subjects=1, trial_type='study')

subject list trial_type position item
0 1 1 study 1 a
1 1 1 study 2 b
3 1 2 study 1 c
4 1 2 study 2 d

>>> data = fr.merge_free_recall(raw)
>>> fr.filter_data(data, subjects=2)

subject list item input output study recall repeat intrusion prior_list ␣
→˓prior_input
4 2 1 e 1 2.0 True True 0 False NaN ␣
→˓ NaN
5 2 1 f 2 1.0 True True 0 False NaN ␣
→˓ NaN
6 2 2 g 1 NaN True False 0 False NaN ␣
→˓ NaN
7 2 2 h 2 NaN True False 0 False NaN ␣
→˓ NaN

psifr.fr.reset_list

psifr.fr.reset_list(df)
Reset list index in a DataFrame.

Parameters
df (pandas.DataFrame) – Raw or merged data. Must have subject and list fields.

Returns
Data with a renumbered list field, starting from 1.

Return type
pandas.DataFrame

Examples

>>> from psifr import fr
>>> subjects_list = [1, 1]
>>> study_lists = [['a', 'b'], ['c', 'd']]
>>> recall_lists = [['b'], ['c', 'd']]
>>> list_nos = [3, 4]
>>> raw = fr.table_from_lists(subjects_list, study_lists, recall_lists, lists=list_
→˓nos)
>>> raw

subject list trial_type position item
(continues on next page)

30 Chapter 4. API reference

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

Psifr, Release v0.8.2

(continued from previous page)

0 1 3 study 1 a
1 1 3 study 2 b
2 1 3 recall 1 b
3 1 4 study 1 c
4 1 4 study 2 d
5 1 4 recall 1 c
6 1 4 recall 2 d

>>> fr.reset_list(raw)
subject list trial_type position item

0 1 1 study 1 a
1 1 1 study 2 b
2 1 1 recall 1 b
3 1 2 study 1 c
4 1 2 study 2 d
5 1 2 recall 1 c
6 1 2 recall 2 d

psifr.fr.split_lists

psifr.fr.split_lists(frame, phase, keys=None, names=None, item_query=None, as_list=False)
Convert free recall data from one phase to split format.

Parameters

• frame (pandas.DataFrame) – Free recall data with separate study and recall events.

• phase ({'study', 'recall', 'raw'}) – Phase of recall to split. If ‘raw’, all trials will be
included.

• keys (list of str, optional) – Data columns to include in the split data. If not speci-
fied, all columns will be included.

• names (list of str, optional) – Name for each column in the returned split data. De-
fault is to use the same names as the input columns.

• item_query (str, optional) – Query string to select study trials to include. See pan-
das.DataFrame.query for allowed format.

• as_list (bool, optional) – If true, each column will be output as a list; otherwise,
outputs will be numpy.ndarray.

Returns
split – Data in split format. Each included column will be a key in the dictionary, with a list of
either numpy.ndarray (default) or lists, containing the values for that column.

Return type
dict of str: list

See also:

table_from_lists
Convert list-format data to a table.

4.1. Free recall analysis 31

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Psifr, Release v0.8.2

Examples

>>> from psifr import fr
>>> study = [['absence', 'hollow'], ['fountain', 'piano']]
>>> recall = [['absence'], ['piano', 'fountain']]
>>> raw = fr.table_from_lists([1, 1], study, recall)
>>> data = fr.merge_free_recall(raw)
>>> data

subject list item input output study recall repeat intrusion prior_
→˓list prior_input
0 1 1 absence 1 1.0 True True 0 False ␣
→˓NaN NaN
1 1 1 hollow 2 NaN True False 0 False ␣
→˓NaN NaN
2 1 2 fountain 1 2.0 True True 0 False ␣
→˓NaN NaN
3 1 2 piano 2 1.0 True True 0 False ␣
→˓NaN NaN

Get study events split by list, just including the list and item fields.

>>> fr.split_lists(data, 'study', keys=['list', 'item'], as_list=True)
{'list': [[1, 1], [2, 2]], 'item': [['absence', 'hollow'], ['fountain', 'piano']]}

Export recall events, split by list.

>>> fr.split_lists(data, 'recall', keys=['item'], as_list=True)
{'item': [['absence'], ['piano', 'fountain']]}

Raw events (i.e., events that haven’t been scored) can also be exported to list format.

>>> fr.split_lists(raw, 'raw', keys=['position'])
{'position': [array([1, 2, 1]), array([1, 2, 1, 2])]}

psifr.fr.pool_index

psifr.fr.pool_index(trial_items, pool_items_list)
Get the index of each item in the full pool.

Parameters

• trial_items (pandas.Series) – The item presented on each trial.

• pool_items_list (list or numpy.ndarray) – List of items in the full pool.

Returns
item_index – Index of each item in the pool. Trials with items not in the pool will be <NA>.

Return type
pandas.Series

32 Chapter 4. API reference

https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series

Psifr, Release v0.8.2

Examples

>>> import pandas as pd
>>> from psifr import fr
>>> trial_items = pd.Series(['b', 'a', 'z', 'c', 'd'])
>>> pool_items_list = ['a', 'b', 'c', 'd', 'e', 'f']
>>> fr.pool_index(trial_items, pool_items_list)
0 1
1 0
2 <NA>
3 2
4 3
dtype: Int64

psifr.fr.block_index

psifr.fr.block_index(list_labels)
Get index of each block in a list.

Parameters
list_labels (list or numpy.ndarray) – Position labels that define the blocks.

Returns
block – Block index of each position.

Return type
numpy.ndarray

Examples

>>> from psifr import fr
>>> list_labels = [2, 2, 3, 3, 3, 1, 1]
>>> fr.block_index(list_labels)
array([1, 1, 2, 2, 2, 3, 3])

4.1.2 Recall probability

spc(df) Serial position curve.
pnr(df[, item_query, test_key, test]) Probability of recall by serial position and output posi-

tion.

4.1. Free recall analysis 33

https://docs.python.org/3/library/stdtypes.html#list

Psifr, Release v0.8.2

psifr.fr.spc

psifr.fr.spc(df)
Serial position curve.

Parameters
df (pandas.DataFrame) – Merged study and recall data. See merge_lists.

Returns

recall – Index includes:

subject
[hashable] Subject identifier.

input
[int] Serial position in the list.

Values are:

recall
[float] Recall probability for each serial position.

Return type
pandas.Series

See also:

plot_spc
Plot serial position curve results.

pnr
Probability of nth recall.

Examples

>>> from psifr import fr
>>> raw = fr.sample_data('Morton2013')
>>> data = fr.merge_free_recall(raw)
>>> fr.spc(data)

recall
subject input
1 1.0 0.541667

2.0 0.458333
3.0 0.625000
4.0 0.333333
5.0 0.437500

... ...
47 20.0 0.500000

21.0 0.770833
22.0 0.729167
23.0 0.895833
24.0 0.958333

[960 rows x 1 columns]

34 Chapter 4. API reference

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series

Psifr, Release v0.8.2

psifr.fr.pnr

psifr.fr.pnr(df, item_query=None, test_key=None, test=None)
Probability of recall by serial position and output position.

Calculate probability of Nth recall, where N is each output position. Invalid recalls (repeats and intrusions) are
ignored and not counted toward output position.

Parameters

• df (pandas.DataFrame) – Merged study and recall data. See merge_lists. List length is
assumed to be the same for all lists within each subject. Must have fields: subject, list, input,
output, study, recall. Input position must be defined such that the first serial position is 1, not
0.

• item_query (str, optional) – Query string to select items to include in the pool of
possible recalls to be examined. See pandas.DataFrame.query for allowed format.

• test_key (str, optional) – Name of column with labels to use when testing transitions
for inclusion.

• test (callable, optional) – Callable that takes in previous and current item values and
returns True for transitions that should be included.

Returns
prob – Analysis results. Has fields: subject, output, input, prob, actual, possible. The prob
column for output x and input y indicates the probability of recalling input position y at output
position x. The actual and possible columns give the raw tallies for how many times an event
actually occurred and how many times it was possible given the recall sequence.

Return type
pandas.DataFrame

See also:

plot_spc
Plot recall probability as a function of serial position.

spc
Overall recall probability by serial position.

Examples

>>> from psifr import fr
>>> raw = fr.sample_data('Morton2013')
>>> data = fr.merge_free_recall(raw)
>>> fr.pnr(data)

prob actual possible
subject output input
1 1 1 0.000000 0 48

2 0.020833 1 48
3 0.000000 0 48
4 0.000000 0 48
5 0.000000 0 48

...
47 24 20 NaN 0 0

21 NaN 0 0
(continues on next page)

4.1. Free recall analysis 35

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

Psifr, Release v0.8.2

(continued from previous page)

22 NaN 0 0
23 NaN 0 0
24 NaN 0 0

[23040 rows x 3 columns]

4.1.3 Intrusions

pli_list_lag(df, max_lag) List lag of prior-list intrusions.

psifr.fr.pli_list_lag

psifr.fr.pli_list_lag(df, max_lag)
List lag of prior-list intrusions.

Parameters

• df (pandas.DataFrame) – Merged study and recall data. See merge_free_recall. Must
have fields: subject, list, intrusion, prior_list. Lists must be numbered starting from 1 and
all lists must be included.

• max_lag (int) – Maximum list lag to consider. The intial max_lag lists for each subject
will be excluded so that all considered lags are possible for all included lists.

Returns
results – For each subject and list lag, the proportion of intrusions at that lag, in the
results['prob'] column.

Return type
pandas.DataFrame

Examples

>>> from psifr import fr
>>> raw = fr.sample_data('Morton2013')
>>> data = fr.merge_free_recall(raw)
>>> fr.pli_list_lag(data, 3)

count per_list prob
subject list_lag
1 1 7 0.155556 0.259259

2 5 0.111111 0.185185
3 0 0.000000 0.000000

2 1 9 0.200000 0.191489
2 2 0.044444 0.042553

...
46 2 1 0.022222 0.100000

3 0 0.000000 0.000000
47 1 5 0.111111 0.277778

2 1 0.022222 0.055556
3 0 0.000000 0.000000

(continues on next page)

36 Chapter 4. API reference

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#int
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

Psifr, Release v0.8.2

(continued from previous page)

[120 rows x 3 columns]

4.1.4 Transition probability

lag_crp(df[, lag_key, count_unique, ...]) Lag-CRP for multiple subjects.
lag_crp_compound(df[, lag_key, ...]) Conditional response probability by lag of current and

prior transitions.
category_crp(df, category_key[, item_query, ...]) Conditional response probability of within-category

transitions.
distance_crp(df, index_key, distances, edges) Conditional response probability by distance bin.

psifr.fr.lag_crp

psifr.fr.lag_crp(df, lag_key='input', count_unique=False, item_query=None, test_key=None, test=None)
Lag-CRP for multiple subjects.

Parameters

• df (pandas.DataFrame) – Merged study and recall data. See merge_lists. List length is
assumed to be the same for all lists. Must have fields: subject, list, input, output, recalled.
Input position must be defined such that the first serial position is 1, not 0.

• lag_key (str, optional) – Name of column to use when calculating lag between recalled
items. Default is to calculate lag based on input position.

• count_unique (bool, optional) – If true, possible transitions of the same lag will only
be incremented once per transition.

• item_query (str, optional) – Query string to select items to include in the pool of
possible recalls to be examined. See pandas.DataFrame.query for allowed format.

• test_key (str, optional) – Name of column with labels to use when testing transitions
for inclusion.

• test (callable, optional) – Callable that takes in previous and current item values and
returns True for transitions that should be included.

Returns

results – Has fields:

subject
[hashable] Results are separated by each subject.

lag
[int] Lag of input position between two adjacent recalls.

prob
[float] Probability of each lag transition.

actual
[int] Total of actual made transitions at each lag.

4.1. Free recall analysis 37

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Psifr, Release v0.8.2

possible
[int] Total of times each lag was possible, given the prior input position and the remaining
items to be recalled.

Return type
pandas.DataFrame

See also:

lag_rank
Rank of the absolute lags in recall sequences.

Examples

>>> from psifr import fr
>>> raw = fr.sample_data('Morton2013')
>>> data = fr.merge_free_recall(raw)
>>> fr.lag_crp(data)

prob actual possible
subject lag
1 -23.0 0.020833 1 48

-22.0 0.035714 3 84
-21.0 0.026316 3 114
-20.0 0.024000 3 125
-19.0 0.014388 2 139

...
47 19.0 0.061224 3 49

20.0 0.055556 2 36
21.0 0.045455 1 22
22.0 0.071429 1 14
23.0 0.000000 0 6

[1880 rows x 3 columns]

psifr.fr.lag_crp_compound

psifr.fr.lag_crp_compound(df, lag_key='input', count_unique=False, item_query=None, test_key=None,
test=None)

Conditional response probability by lag of current and prior transitions.

Parameters

• df (pandas.DataFrame) – Merged study and recall data. See merge_lists. List length is
assumed to be the same for all lists. Must have fields: subject, list, input, output, recalled.
Input position must be defined such that the first serial position is 1, not 0.

• lag_key (str, optional) – Name of column to use when calculating lag between recalled
items. Default is to calculate lag based on input position.

• count_unique (bool, optional) – If true, possible transitions of the same lag will only
be incremented once per transition.

• item_query (str, optional) – Query string to select items to include in the pool of
possible recalls to be examined. See pandas.DataFrame.query for allowed format.

38 Chapter 4. API reference

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Psifr, Release v0.8.2

• test_key (str, optional) – Name of column with labels to use when testing transitions
for inclusion.

• test (callable, optional) – Callable that takes in previous and current item values and
returns True for transitions that should be included.

Returns

results – Has fields:

subject
[hashable] Results are separated by each subject.

previous
[int] Lag of the previous transition.

current
[int] Lag of the current transition.

prob
[float] Probability of each lag transition.

actual
[int] Total of actual made transitions at each lag.

possible
[int] Total of times each lag was possible, given the prior input position and the remaining
items to be recalled.

Return type
pandas.DataFrame

See also:

lag_crp
Conditional response probability by lag.

Examples

>>> from psifr import fr
>>> subjects = [1]
>>> study = [['absence', 'hollow', 'pupil', 'fountain']]
>>> recall = [['fountain', 'hollow', 'absence']]
>>> raw = fr.table_from_lists(subjects, study, recall)
>>> data = fr.merge_free_recall(raw)
>>> crp = fr.lag_crp_compound(data)
>>> crp.head(14)

prob actual possible
subject previous current
1 -3 -3 NaN 0 0

-2 NaN 0 0
-1 NaN 0 0
0 NaN 0 0
1 NaN 0 0
2 NaN 0 0
3 NaN 0 0

-2 -3 NaN 0 0
-2 NaN 0 0

(continues on next page)

4.1. Free recall analysis 39

https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

Psifr, Release v0.8.2

(continued from previous page)

-1 1.0 1 1
0 NaN 0 0
1 0.0 0 1
2 NaN 0 0
3 NaN 0 0

psifr.fr.category_crp

psifr.fr.category_crp(df, category_key, item_query=None, test_key=None, test=None)
Conditional response probability of within-category transitions.

Parameters

• df (pandas.DataFrame) – Merged study and recall data. See merge_lists. List length is
assumed to be the same for all lists within each subject. Must have fields: subject, list, input,
output, recalled.

• category_key (str) – Name of column with category labels.

• item_query (str, optional) – Query string to select items to include in the pool of
possible recalls to be examined. See pandas.DataFrame.query for allowed format.

• test_key (str, optional) – Name of column with labels to use when testing transitions
for inclusion.

• test (callable, optional) – Callable that takes in previous and current item values and
returns True for transitions that should be included.

Returns

results – Has fields:

subject
[hashable] Results are separated by each subject.

prob
[float] Probability of each lag transition.

actual
[int] Total of actual made transitions at each lag.

possible
[int] Total of times each lag was possible, given the prior input position and the remaining
items to be recalled.

Return type
pandas.DataFrame

40 Chapter 4. API reference

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

Psifr, Release v0.8.2

Examples

>>> from psifr import fr
>>> raw = fr.sample_data('Morton2013')
>>> data = fr.merge_free_recall(raw, study_keys=['category'])
>>> cat_crp = fr.category_crp(data, 'category')
>>> cat_crp.head()

prob actual possible
subject
1 0.801147 419 523
2 0.733456 399 544
3 0.763158 377 494
4 0.814882 449 551
5 0.877273 579 660

psifr.fr.distance_crp

psifr.fr.distance_crp(df, index_key, distances, edges, centers=None, count_unique=False, item_query=None,
test_key=None, test=None)

Conditional response probability by distance bin.

Parameters

• df (pandas.DataFrame) – Merged free recall data.

• index_key (str) – Name of column containing the index of each item in the distances
matrix.

• distances (numpy.array) – Items x items matrix of pairwise distances or similarities.

• edges (array-like) – Edges of bins to apply to the distances.

• centers (array-like, optional) – Centers to label each bin with. If not specified, the
center point between edges will be used.

• count_unique (bool, optional) – If true, possible transitions to a given distance bin
will only count once for a given transition.

• item_query (str, optional) – Query string to select items to include in the pool of
possible recalls to be examined. See pandas.DataFrame.query for allowed format.

• test_key (str, optional) – Name of column with labels to use when testing transitions
for inclusion.

• test (callable, optional) – Callable that takes in previous and current item values and
returns True for transitions that should be included.

Returns

crp – Has fields:

subject
[hashable] Results are separated by each subject.

bin
[int] Distance bin.

prob
[float] Probability of each distance bin.

4.1. Free recall analysis 41

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Psifr, Release v0.8.2

actual
[int] Total of actual transitions for each distance bin.

possible
[int] Total of times each distance bin was possible, given the prior input position and the
remaining items to be recalled.

Return type
pandas.DataFrame

See also:

pool_index
Given a list of presented items and an item pool, look up the pool index of each item.

distance_rank
Calculate rank of transition distances.

Examples

>>> import numpy as np
>>> from scipy.spatial.distance import squareform
>>> from psifr import fr
>>> raw = fr.sample_data('Morton2013')
>>> data = fr.merge_free_recall(raw)
>>> items, distances = fr.sample_distances('Morton2013')
>>> data['item_index'] = fr.pool_index(data['item'], items)
>>> edges = np.percentile(squareform(distances), np.linspace(1, 99, 10))
>>> fr.distance_crp(data, 'item_index', distances, edges)

bin prob actual possible
subject center
1 0.467532 (0.352, 0.583] 0.085456 151 1767

0.617748 (0.583, 0.653] 0.067916 87 1281
0.673656 (0.653, 0.695] 0.062500 65 1040
0.711075 (0.695, 0.727] 0.051836 48 926
0.742069 (0.727, 0.757] 0.050633 44 869

...
47 0.742069 (0.727, 0.757] 0.062822 61 971

0.770867 (0.757, 0.785] 0.030682 27 880
0.800404 (0.785, 0.816] 0.040749 37 908
0.834473 (0.816, 0.853] 0.046651 39 836
0.897275 (0.853, 0.941] 0.028868 25 866

[360 rows x 4 columns]

42 Chapter 4. API reference

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

Psifr, Release v0.8.2

4.1.5 Transition rank

lag_rank(df[, item_query, test_key, test]) Calculate rank of the absolute lags in free recall lists.
distance_rank(df, index_key, distances[, ...]) Calculate rank of transition distances in free recall lists.
distance_rank_shifted(df, index_key, ...[, ...]) Rank of transition distances relative to earlier items.

psifr.fr.lag_rank

psifr.fr.lag_rank(df, item_query=None, test_key=None, test=None)
Calculate rank of the absolute lags in free recall lists.

Parameters

• df (pandas.DataFrame) – Merged study and recall data. See merge_lists. List length is
assumed to be the same for all lists within each subject. Must have fields: subject, list, input,
output, recalled. Input position must be defined such that the first serial position is 1, not 0.

• item_query (str, optional) – Query string to select items to include in the pool of
possible recalls to be examined. See pandas.DataFrame.query for allowed format.

• test_key (str, optional) – Name of column with labels to use when testing transitions
for inclusion.

• test (callable, optional) – Callable that takes in previous and current item values and
returns True for transitions that should be included.

Returns
stat – Has fields ‘subject’ and ‘rank’.

Return type
pandas.DataFrame

See also:

lag_crp
Conditional response probability by input lag.

Examples

>>> from psifr import fr
>>> raw = fr.sample_data('Morton2013')
>>> data = fr.merge_free_recall(raw)
>>> lag_rank = fr.lag_rank(data)
>>> lag_rank.head()

rank
subject
1 0.610953
2 0.635676
3 0.612607
4 0.667090
5 0.643923

4.1. Free recall analysis 43

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

Psifr, Release v0.8.2

psifr.fr.distance_rank

psifr.fr.distance_rank(df, index_key, distances, item_query=None, test_key=None, test=None)
Calculate rank of transition distances in free recall lists.

Parameters

• df (pandas.DataFrame) – Merged study and recall data. See merge_lists. List length is
assumed to be the same for all lists within each subject. Must have fields: subject, list, input,
output, recalled. Input position must be defined such that the first serial position is 1, not 0.

• index_key (str) – Name of column containing the index of each item in the distances
matrix.

• distances (numpy.array) – Items x items matrix of pairwise distances or similarities.

• item_query (str, optional) – Query string to select items to include in the pool of
possible recalls to be examined. See pandas.DataFrame.query for allowed format.

• test_key (str, optional) – Name of column with labels to use when testing transitions
for inclusion.

• test (callable, optional) – Callable that takes in previous and current item values and
returns True for transitions that should be included.

Returns
stat – Has fields ‘subject’ and ‘rank’.

Return type
pandas.DataFrame

See also:

pool_index
Given a list of presented items and an item pool, look up the pool index of each item.

distance_crp
Conditional response probability by distance bin.

Examples

>>> from scipy.spatial.distance import squareform
>>> from psifr import fr
>>> raw = fr.sample_data('Morton2013')
>>> data = fr.merge_free_recall(raw)
>>> items, distances = fr.sample_distances('Morton2013')
>>> data['item_index'] = fr.pool_index(data['item'], items)
>>> dist_rank = fr.distance_rank(data, 'item_index', distances)
>>> dist_rank.head()

rank
subject
1 0.635571
2 0.571457
3 0.627282
4 0.637596
5 0.646181

44 Chapter 4. API reference

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

Psifr, Release v0.8.2

psifr.fr.distance_rank_shifted

psifr.fr.distance_rank_shifted(df, index_key, distances, max_shift, item_query=None, test_key=None,
test=None)

Rank of transition distances relative to earlier items.

Parameters

• df (pandas.DataFrame) – Merged study and recall data. See merge_lists. List length is
assumed to be the same for all lists within each subject. Must have fields: subject, list, input,
output, recalled. Input position must be defined such that the first serial position is 1, not 0.

• index_key (str) – Name of column containing the index of each item in the distances
matrix.

• distances (numpy.array) – Items x items matrix of pairwise distances or similarities.

• max_shift (int) – Maximum number of items back for which to rank distances.

• item_query (str, optional) – Query string to select items to include in the pool of
possible recalls to be examined. See pandas.DataFrame.query for allowed format.

• test_key (str, optional) – Name of column with labels to use when testing transitions
for inclusion.

• test (callable, optional) – Callable that takes in previous and current item values and
returns True for transitions that should be included.

Returns
stat – Has fields ‘subject’ and ‘rank’.

Return type
pandas.DataFrame

See also:

pool_index
Given a list of presented items and an item pool, look up the pool index of each item.

distance_rank
Rank of transition distances relative to the just-previous item.

Examples

>>> from scipy.spatial.distance import squareform
>>> from psifr import fr
>>> raw = fr.sample_data('Morton2013')
>>> data = fr.merge_free_recall(raw)
>>> items, distances = fr.sample_distances('Morton2013')
>>> data['item_index'] = fr.pool_index(data['item'], items)
>>> dist_rank = fr.distance_rank_shifted(data, 'item_index', distances, 3)
>>> dist_rank

rank
subject shift
1 -3 0.523426

-2 0.559199
-1 0.634392

2 -3 0.475931
(continues on next page)

4.1. Free recall analysis 45

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

Psifr, Release v0.8.2

(continued from previous page)

-2 0.507574
... ...
46 -2 0.515332

-1 0.603304
47 -3 0.542951

-2 0.565001
-1 0.635415

[120 rows x 1 columns]

4.1.6 Clustering

category_clustering(df, category_key) Category clustering of recall sequences.

psifr.fr.category_clustering

psifr.fr.category_clustering(df, category_key)
Category clustering of recall sequences.

Calculates ARC (adjusted ratio of clustering) and LBC (list-based clustering) statistics indexing recall clustering
by category.

The papers introducing these measures do not describe how to handle repeats and intrusions. Here, to maintain
the assumptions of the measures, they are removed from the recall sequences.

Note that ARC is undefined when only one category is recalled. Lists with undefined statistics will be excluded
from calculation of mean subject-level statistics. To calculate for each list separately, group by list before calling
the function. For example: df.groupby('list').apply(fr.category_clustering, 'category').

Parameters

• df (pandas.DataFrame) – Merged study and recall data. See merge_free_recall. Must
have a field indicating the category of each study and recall event.

• category_key (str) – Column with category labels. Labels may be any hashable (e.g., a
str or int).

Returns
stats – For each subject, includes columns with the mean ARC and LBC statistics.

Return type
pandas.DataFrame

46 Chapter 4. API reference

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

Psifr, Release v0.8.2

Examples

>>> from psifr import fr
>>> raw = fr.sample_data('Morton2013')
>>> mixed = raw.query('list_type == "mixed"')
>>> data = fr.merge_free_recall(mixed, list_keys=['category'])
>>> stats = fr.category_clustering(data, 'category')
>>> stats.head()

lbc arc
subject
1 3.657971 0.614545
2 2.953623 0.407839
3 3.363768 0.627371
4 4.444928 0.688761
5 7.530435 0.873755

4.1.7 Plotting

plot_raster(df[, hue, palette, marker, ...]) Plot recalls in a raster plot.
plot_spc(recall, **facet_kws) Plot a serial position curve.
plot_lag_crp(recall[, max_lag, lag_key, split]) Plot conditional response probability by lag.
plot_distance_crp(crp[, min_samples]) Plot response probability by distance bin.
plot_swarm_error(data[, x, y, swarm_color, ...]) Plot points as a swarm plus mean with error bars.

psifr.fr.plot_raster

psifr.fr.plot_raster(df, hue='input', palette=None, marker='s', intrusion_color=None,
orientation='horizontal', length=6, aspect=None, legend='auto', **facet_kws)

Plot recalls in a raster plot.

Parameters

• df (pandas.DataFrame) – Scored free recall data.

• hue (str or None, optional) – Column to use to set marker color.

• palette (optional) – Palette specification supported by Seaborn.

• marker (str, optional) – Marker code supported by Seaborn.

• intrusion_color (optional) – Color of intrusions.

• orientation ({'horizontal', 'vertical'}, optional) – Whether lists should be
stacked horizontally or vertically in the plot.

• length (float, optional) – Size of the plot dimension along which list varies.

• aspect (float, optional) – Aspect ratio of plot for lists over items.

• legend (str, optional) – Legend setting. See seaborn.scatterplot for details.

• facet_kws (optional) – Additional key words to pass to seaborn.FacetGrid.

4.1. Free recall analysis 47

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

Psifr, Release v0.8.2

psifr.fr.plot_spc

psifr.fr.plot_spc(recall, **facet_kws)
Plot a serial position curve.

Additional arguments are passed to seaborn.relplot.

Parameters
recall (pandas.DataFrame) – Results from calling spc.

psifr.fr.plot_lag_crp

psifr.fr.plot_lag_crp(recall, max_lag=5, lag_key='lag', split=True, **facet_kws)
Plot conditional response probability by lag.

Additional arguments are passed to seaborn.FacetGrid.

Parameters

• recall (pandas.DataFrame) – Results from calling lag_crp.

• max_lag (int, optional) – Maximum absolute lag to plot.

• lag_key (str, optional) – Name of the column indicating lag.

• split (bool, optional) – If true, will plot as two separate lines with a gap at lag 0.

psifr.fr.plot_distance_crp

psifr.fr.plot_distance_crp(crp, min_samples=None, **facet_kws)
Plot response probability by distance bin.

Parameters

• crp (pandas.DataFrame) – Results from fr.distance_crp.

• min_samples (int) – Minimum number of samples a bin must have per subject to include
in the plot.

• **facet_kws – Additional inputs to pass to seaborn.relplot.

psifr.fr.plot_swarm_error

psifr.fr.plot_swarm_error(data, x=None, y=None, swarm_color=None, swarm_size=5, point_color='k',
**facet_kws)

Plot points as a swarm plus mean with error bars.

Parameters

• data (pandas.DataFrame) – DataFrame with statistics to plot.

• x (str) – Name of variable to plot on x-axis.

• y (str) – Name of variable to plot on y-axis.

• swarm_color – Color for swarm plot points. May use any specification supported by
seaborn.

• swarm_size (float) – Size of swarm plot points.

48 Chapter 4. API reference

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#int
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Psifr, Release v0.8.2

• point_color – Color for the point plot (error bars).

• facet_kws – Additional keywords for the FacetGrid.

4.2 Measures

4.2.1 Transition measure base class

TransitionMeasure(items_key, label_key[, ...]) Measure of free recall dataset with multiple subjects.
TransitionMeasure.split_lists(data, phase[, ...]) Get relevant fields and split by list.
TransitionMeasure.analyze(data) Analyze a free recall dataset with multiple subjects.
TransitionMeasure.analyze_subject(subject, ...) Analyze a single subject.

psifr.measures.TransitionMeasure

class psifr.measures.TransitionMeasure(items_key, label_key, item_query=None, test_key=None,
test=None)

Measure of free recall dataset with multiple subjects.

Parameters

• items_key (str) – Data column with item identifiers.

• label_key (str) – Data column with trial labels to use for the measure.

• item_query (str) – Query string to indicate trials to include in the measure.

• test_key (str) – Data column with labels to use when testing for trial inclusion.

• test (callable) – Test of trial inclusion. Takes the previous and current test values and
return True if the transition should be included.

keys

List of columns to use for the measure.

Type
dict of {str: str}

item_query

Query string to indicate trials to include in the measure.

Type
str

test

Test of trial inclusion.

Type
callable

__init__(items_key, label_key, item_query=None, test_key=None, test=None)

4.2. Measures 49

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Psifr, Release v0.8.2

Methods

__init__(items_key, label_key[, item_query, ...])

analyze(data) Analyze a free recall dataset with multiple subjects.
analyze_subject(subject, pool_lists, ...) Analyze a single subject.
split_lists(data, phase[, item_query]) Get relevant fields and split by list.

psifr.measures.TransitionMeasure.split_lists

TransitionMeasure.split_lists(data, phase, item_query=None)
Get relevant fields and split by list.

Parameters

• data (pandas.DataFrame) – Raw free recall data.

• phase (str) – Phase to split (‘study’ or ‘recall’).

• item_query (str, optional) – Query string to determine included trials.

psifr.measures.TransitionMeasure.analyze

TransitionMeasure.analyze(data)
Analyze a free recall dataset with multiple subjects.

Parameters
data (pandas.DataFrame) – Raw (not merged) free recall data.

Returns
stat – Statistics calculated for each subject.

Return type
pandas.DataFrame

psifr.measures.TransitionMeasure.analyze_subject

abstract TransitionMeasure.analyze_subject(subject, pool_lists, recall_lists)
Analyze a single subject.

Parameters

• subject (int or str) – Identifier of the subject to analyze.

• pool_lists (dict of lists of numpy.ndarray) – Information about the item pool
for each list, with keys for items, label, and test arrays.

• recall_lists (dict of lists of numpy.ndarray) – Information about the recall se-
quence for each list, with keys for items, label, and test arrays.

Returns
Results of the analysis for one subject. Should include a ‘subject’ column in the index.

Return type
pandas.DataFrame

50 Chapter 4. API reference

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

Psifr, Release v0.8.2

4.2.2 Transition measures

TransitionOutputs(list_length[, item_query, ...]) Measure recall probability by input and output position.
TransitionLag(list_length[, lag_key, ...]) Measure conditional response probability by lag.
TransitionLagRank([item_query, test_key, test]) Measure lag rank of transitions.
TransitionCategory(category_key[, ...]) Measure conditional response probability by category

transition.
TransitionDistance(index_key, distances, edges) Measure conditional response probability by distance.
TransitionDistanceRank(index_key, distances) Measure transition rank by distance.

4.3 Transitions

4.3.1 Counting transitions

count_lags(list_length, pool_items, recall_items) Count actual and possible serial position lags.
count_lags_compound(list_length, pool_items, ...) Count lags conditional on the lag of the previous transi-

tion.
count_category(pool_items, recall_items, ...) Count within-category transitions.
count_distance(distances, edges, pool_items, ...) Count transitions within distance bins.

psifr.transitions.count_lags

psifr.transitions.count_lags(list_length, pool_items, recall_items, pool_label=None, recall_label=None,
pool_test=None, recall_test=None, test=None, count_unique=False)

Count actual and possible serial position lags.

Parameters

• list_length (int) – Number of items in each list.

• pool_items (list) – List of the serial positions available for recall in each list. Must match
the serial position codes used in recall_items.

• recall_items (list) – List indicating the serial position of each recall in output order
(NaN for intrusions).

• pool_label (list, optional) – List of the positions to use for calculating lag. Default
is to use pool_items.

• recall_label (list, optional) – List of position labels in recall order. Default is to
use recall_items.

• pool_test (list, optional) – List of some test value for each item in the pool.

• recall_test (list, optional) – List of some test value for each recall attempt by output
position.

• test (callable) – Callable that evaluates each transition between items n and n+1. Must
take test values for items n and n+1 and return True if a given transition should be included.

• count_unique (bool, optional) – If true, only unique values will be counted toward the
possible transitions. If multiple items are avilable for recall for a given transition and a given
bin, that bin will only be incremented once. If false, all possible transitions will add to the
count.

4.3. Transitions 51

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

Psifr, Release v0.8.2

Returns

• actual (pandas.Series) – Count of actual lags that occurred in the recall sequence.

• possible (pandas.Series) – Count of possible lags.

See also:

rank_lags
Rank of serial position lags.

Examples

>>> from psifr import transitions
>>> pool_items = [[1, 2, 3, 4]]
>>> recall_items = [[4, 2, 3, 1]]
>>> actual, possible = transitions.count_lags(4, pool_items, recall_items)
>>> actual
lag
-3 0
-2 2
-1 0
0 0
1 1
2 0
3 0
dtype: int64
>>> possible
lag
-3 1
-2 2
-1 2
0 0
1 1
2 0
3 0
dtype: int64

psifr.transitions.count_lags_compound

psifr.transitions.count_lags_compound(list_length, pool_items, recall_items, pool_label=None,
recall_label=None, pool_test=None, recall_test=None, test=None,
count_unique=False)

Count lags conditional on the lag of the previous transition.

Parameters

• list_length (int) – Number of items in each list.

• pool_items (list) – List of the serial positions available for recall in each list. Must match
the serial position codes used in recall_items.

• recall_items (list) – List indicating the serial position of each recall in output order
(NaN for intrusions).

52 Chapter 4. API reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Psifr, Release v0.8.2

• pool_label (list, optional) – List of the positions to use for calculating lag. Default
is to use pool_items.

• recall_label (list, optional) – List of position labels in recall order. Default is to
use recall_items.

• pool_test (list, optional) – List of some test value for each item in the pool.

• recall_test (list, optional) – List of some test value for each recall attempt by output
position.

• test (callable) – Callable that evaluates each transition between items n and n+1. Must
take test values for items n and n+1 and return True if a given transition should be included.

• count_unique (bool, optional) – If true, only unique values will be counted toward the
possible transitions. If multiple items are avilable for recall for a given transition and a given
bin, that bin will only be incremented once. If false, all possible transitions will add to the
count.

Returns

• actual (pandas.Series) – Count of actual lags that occurred in the recall sequence.

• possible (pandas.Series) – Count of possible lags.

See also:

count_lags
Count of individual transitions.

Examples

>>> from psifr import transitions
>>> pool_items = [[1, 2, 3]]
>>> recall_items = [[3, 1, 2]]
>>> actual, possible = transitions.count_lags_compound(3, pool_items, recall_items)
>>> (actual == possible).all()
True
>>> actual
previous current
-2 -2 0

-1 0
0 0
1 1
2 0

-1 -2 0
-1 0
0 0
1 0
2 0

0 -2 0
-1 0
0 0
1 0
2 0

1 -2 0
-1 0

(continues on next page)

4.3. Transitions 53

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

Psifr, Release v0.8.2

(continued from previous page)

0 0
1 0
2 0

2 -2 0
-1 0
0 0
1 0
2 0

dtype: int64

psifr.transitions.count_category

psifr.transitions.count_category(pool_items, recall_items, pool_category, recall_category,
pool_test=None, recall_test=None, test=None)

Count within-category transitions.

Parameters

• pool_items (list) – List of the serial positions available for recall in each list. Must match
the serial position codes used in recall_items.

• recall_items (list) – List indicating the serial position of each recall in output order
(NaN for intrusions).

• pool_category (list) – List of the category of each item in the pool for each list.

• recall_category (list) – List of item category in recall order.

• pool_test (list, optional) – List of some test value for each item in the pool.

• recall_test (list, optional) – List of some test value for each recall attempt by output
position.

• test (callable) – Callable that evaluates each transition between items n and n+1. Must
take test values for items n and n+1 and return True if a given transition should be included.

Returns

• actual (int) – Count of actual within-category transitions.

• possible (int) – Count of possible within-category transitions.

Examples

>>> from psifr import transitions
>>> pool_items = [[1, 2, 3, 4]]
>>> recall_items = [[4, 3, 1, 2]]
>>> pool_category = [[1, 1, 2, 2]]
>>> recall_category = [[2, 2, 1, 1]]
>>> transitions.count_category(
... pool_items, recall_items, pool_category, recall_category
...)
(2, 2)

54 Chapter 4. API reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Psifr, Release v0.8.2

psifr.transitions.count_distance

psifr.transitions.count_distance(distances, edges, pool_items, recall_items, pool_index, recall_index,
pool_test=None, recall_test=None, test=None, count_unique=False)

Count transitions within distance bins.

Parameters

• distances (numpy.array) – Items x items matrix of pairwise distances or similarities.

• edges (array-like) – Edges of bins to apply to distances.

• pool_items (list of list) – Unique item codes for each item in the pool available for
recall.

• recall_items (list of list) – Unique item codes of recalled items.

• pool_index (list of list) – Index of each item in the distances matrix.

• recall_index (list of list) – Index of each recalled item.

• pool_test (list of list, optional) – Test value for each item in the pool.

• recall_test (list of list, optional) – Test value for each recalled item.

• test (callable) – Called as test(prev, curr) or test(prev, poss) to screen actual and possible
transitions, respectively.

• count_unique (bool, optional) – If true, only unique values will be counted toward the
possible transitions. If multiple items are avilable for recall for a given transition and a given
bin, that bin will only be incremented once. If false, all possible transitions will add to the
count.

Returns

• actual (pandas.Series) – Count of actual transitions made for each bin.

• possible (pandas.Series) – Count of possible transitions for each bin.

See also:

rank_distance
Calculate percentile rank of transition distances.

Examples

>>> import numpy as np
>>> from psifr import transitions
>>> distances = np.array([[0, 1, 2, 2], [1, 0, 2, 2], [2, 2, 0, 3], [2, 2, 3, 0]])
>>> edges = np.array([0.5, 1.5, 2.5, 3.5])
>>> pool_items = [[1, 2, 3, 4]]
>>> recall_items = [[4, 2, 3, 1]]
>>> pool_index = [[0, 1, 2, 3]]
>>> recall_index = [[3, 1, 2, 0]]
>>> actual, possible = transitions.count_distance(
... distances, edges, pool_items, recall_items, pool_index, recall_index
...)
>>> actual
(0.5, 1.5] 0

(continues on next page)

4.3. Transitions 55

https://docs.python.org/3/library/functions.html#bool

Psifr, Release v0.8.2

(continued from previous page)

(1.5, 2.5] 3
(2.5, 3.5] 0
dtype: int64
>>> possible
(0.5, 1.5] 1
(1.5, 2.5] 4
(2.5, 3.5] 1
dtype: int64

4.3.2 Ranking transitions

percentile_rank(actual, possible) Get percentile rank of a score compared to possible
scores.

rank_lags(pool_items, recall_items[, ...]) Calculate rank of absolute lag for free recall lists.
rank_distance(distances, pool_items, ...[, ...]) Calculate percentile rank of transition distances.
rank_distance_shifted(distances, max_shift, ...) Calculate percentile rank of shifted distances.

psifr.transitions.percentile_rank

psifr.transitions.percentile_rank(actual, possible)
Get percentile rank of a score compared to possible scores.

Parameters

• actual (float) – Score to be ranked. Generally a distance score.

• possible (numpy.ndarray or list) – Possible scores to be compared to.

Returns
rank – Rank scaled to range from 0 (low score) to 1 (high score).

Return type
float

Examples

>>> from psifr import transitions
>>> actual = 3
>>> possible = [1, 2, 2, 2, 3]
>>> transitions.percentile_rank(actual, possible)
1.0

56 Chapter 4. API reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

Psifr, Release v0.8.2

psifr.transitions.rank_lags

psifr.transitions.rank_lags(pool_items, recall_items, pool_label=None, recall_label=None,
pool_test=None, recall_test=None, test=None)

Calculate rank of absolute lag for free recall lists.

Parameters

• pool_items (list) – List of the serial positions available for recall in each list. Must match
the serial position codes used in recall_items.

• recall_items (list) – List indicating the serial position of each recall in output order
(NaN for intrusions).

• pool_label (list, optional) – List of the positions to use for calculating lag. Default
is to use pool_items.

• recall_label (list, optional) – List of position labels in recall order. Default is to
use recall_items.

• pool_test (list, optional) – List of some test value for each item in the pool.

• recall_test (list, optional) – List of some test value for each recall attempt by output
position.

• test (callable) – Callable that evaluates each transition between items n and n+1. Must
take test values for items n and n+1 and return True if a given transition should be included.

Returns
rank – Absolute lag percentile rank for each included transition. The rank is 0 if the lag was the
most distant of the available transitions, and 1 if the lag was the closest. Ties are assigned to the
average percentile rank.

Return type
list

See also:

count_lags
Count actual and possible serial position lags.

Examples

>>> from psifr import transitions
>>> pool_items = [[1, 2, 3, 4]]
>>> recall_items = [[4, 2, 3, 1]]
>>> transitions.rank_lags(pool_items, recall_items)
[0.5, 0.5, nan]

4.3. Transitions 57

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Psifr, Release v0.8.2

psifr.transitions.rank_distance

psifr.transitions.rank_distance(distances, pool_items, recall_items, pool_index, recall_index,
pool_test=None, recall_test=None, test=None)

Calculate percentile rank of transition distances.

Parameters

• distances (numpy.array) – Items x items matrix of pairwise distances or similarities.

• pool_items (list of list) – Unique item codes for each item in the pool available for
recall.

• recall_items (list of list) – Unique item codes of recalled items.

• pool_index (list of list) – Index of each item in the distances matrix.

• recall_index (list of list) – Index of each recalled item.

• pool_test (list of list, optional) – Test value for each item in the pool.

• recall_test (list of list, optional) – Test value for each recalled item.

• test (callable) – Called as test(prev, curr) or test(prev, poss) to screen actual and possible
transitions, respectively.

Returns
rank – Distance percentile rank for each included transition. The rank is 0 if the distance was
the largest of the available transitions, and 1 if the distance was the smallest. Ties are assigned
to the average percentile rank.

Return type
list

See also:

count_distance
Count transitions within distance bins.

Examples

>>> import numpy as np
>>> from psifr import transitions
>>> distances = np.array([[0, 1, 2, 2], [1, 0, 2, 2], [2, 2, 0, 3], [2, 2, 3, 0]])
>>> pool_items = [[1, 2, 3, 4]]
>>> recall_items = [[4, 2, 3, 1]]
>>> pool_index = [[0, 1, 2, 3]]
>>> recall_index = [[3, 1, 2, 0]]
>>> transitions.rank_distance(
... distances, pool_items, recall_items, pool_index, recall_index
...)
[0.75, 0.0, nan]

58 Chapter 4. API reference

https://docs.python.org/3/library/stdtypes.html#list

Psifr, Release v0.8.2

psifr.transitions.rank_distance_shifted

psifr.transitions.rank_distance_shifted(distances, max_shift, pool_items, recall_items, pool_index,
recall_index, pool_test=None, recall_test=None, test=None)

Calculate percentile rank of shifted distances.

Parameters

• distances (numpy.array) – Items x items matrix of pairwise distances or similarities.

• max_shift (int) – Maximum number of items back for which to rank distances.

• pool_items (list of list) – Unique item codes for each item in the pool available for
recall.

• recall_items (list of list) – Unique item codes of recalled items.

• pool_index (list of list) – Index of each item in the distances matrix.

• recall_index (list of list) – Index of each recalled item.

• pool_test (list of list, optional) – Test value for each item in the pool.

• recall_test (list of list, optional) – Test value for each recalled item.

• test (callable) – Called as test(prev, curr) or test(prev, poss) to screen actual and possible
transitions, respectively.

Returns
rank – [transitions x max_shift] array with distance percentile ranks. The rank is 0 if the distance
was the largest of the available transitions, and 1 if the distance was the smallest. Ties are assigned
to the average percentile rank.

Return type
numpy.ndarray

See also:

rank_distance
to the immediately preceding item only.

Examples

>>> import numpy as np
>>> from psifr import transitions
>>> distances = np.array(
... [
... [0, 1, 2, 2, 2],
... [1, 0, 2, 2, 2],
... [2, 2, 0, 3, 3],
... [2, 2, 3, 0, 2],
... [2, 2, 3, 2, 0],
...]
...)
>>> pool_items = [[1, 2, 3, 4, 5]]
>>> recall_items = [[4, 2, 3, 1]]
>>> pool_index = [[0, 1, 2, 3, 4]]
>>> recall_index = [[3, 1, 2, 0]]

(continues on next page)

4.3. Transitions 59

https://docs.python.org/3/library/functions.html#int

Psifr, Release v0.8.2

(continued from previous page)

>>> transitions.rank_distance_shifted(
... distances, 2, pool_items, recall_items, pool_index, recall_index
...)
array([[0. , 0.25],

[1. , 1.]])

4.3.3 Iterating over transitions

transitions_masker(pool_items, recall_items, ...) Iterate over transitions with masking.
sequences_masker(n_transitions, pool_items, ...) Yield sequences of adjacent included transitions.

psifr.transitions.transitions_masker

psifr.transitions.transitions_masker(pool_items, recall_items, pool_output, recall_output,
pool_test=None, recall_test=None, test=None)

Iterate over transitions with masking.

Transitions are between a “previous” item and a “current” item. Non-included transitions will be skipped. A
transition is yielded only if it matches the following conditions:

(1) Each item involved in the transition is in the pool. Items are removed from the pool after they appear as the
previous item.

(2) Optionally, an additional check is run based on test values associated with the items in the transition. For
example, this could be used to only include transitions where the category of the previous and current items is
the same.

The masker will yield “output” values, which may be distinct from the item identifiers used to determine item
repeats.

Parameters

• pool_items (list) – Items available for recall. Order does not matter. May contain re-
peated values. Item identifiers must be unique within pool.

• recall_items (list) – Recalled items in output position order.

• pool_output (list) – Output values for pool items. Must be the same order as pool.

• recall_output (list) – Output values in output position order.

• pool_test (list, optional) – Test values for items available for recall. Must be the
same order as pool.

• recall_test (list, optional) – Test values for items in output position order.

• test (callable, optional) – Used to test whether individual transitions should be in-
cluded, based on test values.

test(prev, curr) - test for included transition

test(prev, poss) - test for included possible transition

Yields

• output (int) – Output position of this transition. The first transition is 1.

• prev (object) – Output value for the “from” item on this transition.

60 Chapter 4. API reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Psifr, Release v0.8.2

• curr (object) – Output value for the “to” item.

• poss (numpy.array) – Output values for all possible valid “to” items.

Examples

>>> from psifr import transitions
>>> pool = [1, 2, 3, 4, 5, 6]
>>> recs = [6, 2, 3, 6, 1, 4]
>>> masker = transitions.transitions_masker(
... pool_items=pool, recall_items=recs, pool_output=pool, recall_output=recs
...)
>>> for output, prev, curr, poss in masker:
... print(output, prev, curr, poss)
1 6 2 [1 2 3 4 5]
2 2 3 [1 3 4 5]
5 1 4 [4 5]

psifr.transitions.sequences_masker

psifr.transitions.sequences_masker(n_transitions, pool_items, recall_items, pool_output, recall_output,
pool_test=None, recall_test=None, test=None)

Yield sequences of adjacent included transitions.

Parameters

• n_transitions (int) – Number of transitions to include in yielded sequences.

• pool_items (list) – Items available for recall. Order does not matter. May contain re-
peated values. Item identifiers must be unique within pool.

• recall_items (list) – Recalled items in output position order.

• pool_output (list) – Output values for pool items. Must be the same order as pool.

• recall_output (list) – Output values in output position order.

• pool_test (list, optional) – Test values for items available for recall. Must be the
same order as pool.

• recall_test (list, optional) – Test values for items in output position order.

• test (callable, optional) – Used to test whether individual transitions should be in-
cluded, based on test values.

test(prev, curr) - test for included transition

test(prev, poss) - test for included possible transition

Yields

• output (int) – Output positions of included transitions. The first transition is 1.

• prev (list) – Output values for the “from” item in included transitions.

• curr (list) – Output values for the “to” item in included transitions.

• poss (list of numpy.ndarray) – Output values for all possible valid “to” items in included
transitions.

4.3. Transitions 61

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Psifr, Release v0.8.2

See also:

transitions_masker
Yield included transitions.

Examples

>>> from psifr import transitions
>>> pool = [1, 2, 3, 4, 5, 6]
>>> recs = [6, 2, 3, 6, 1, 4, 5]
>>> masker = transitions.sequences_masker(
... 2, pool_items=pool, recall_items=recs, pool_output=pool, recall_output=recs
...)
>>> for output, prev, curr, poss in masker:
... print(output, prev, curr, poss)
[1, 2] [6, 2] [2, 3] [array([1, 2, 3, 4, 5]), array([1, 3, 4, 5])]
[5, 6] [1, 4] [4, 5] [array([4, 5]), array([5])]

>>> pool = [1, 2, 3, 4]
>>> recs = [4, 3, 1, 2]
>>> masker = transitions.sequences_masker(
... 3, pool_items=pool, recall_items=recs, pool_output=pool, recall_output=recs
...)
>>> for output, prev, curr, poss in masker:
... print(output, prev, curr, poss)
[1, 2, 3] [4, 3, 1] [3, 1, 2] [array([1, 2, 3]), array([1, 2]), array([2])]

4.4 Outputs

4.4.1 Counting recalls by serial position and output position

count_outputs(list_length, pool_items, ...) Count actual and possible recalls for each output posi-
tion.

psifr.outputs.count_outputs

psifr.outputs.count_outputs(list_length, pool_items, recall_items, pool_label, recall_label, pool_test=None,
recall_test=None, test=None, count_unique=False)

Count actual and possible recalls for each output position.

Parameters

• list_length (int) – Number of items in each list.

• pool_items (list) – List of the serial positions available for recall in each list. Must match
the serial position codes used in recall_items.

• recall_items (list) – List indicating the serial position of each recall in output order
(NaN for intrusions).

62 Chapter 4. API reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Psifr, Release v0.8.2

• pool_label (list) – List of the positions to use for calculating lag. Default is to use
pool_items.

• recall_label (list) – List of position labels in recall order. Default is to use recall_items.

• pool_test (list, optional) – List of some test value for each item in the pool.

• recall_test (list, optional) – List of some test value for each recall attempt by output
position.

• test (callable) – Callable that evaluates each transition between items n and n+1. Must
take test values for items n and n+1 and return True if a given transition should be included.

• count_unique (bool) – If true, possible recalls with the same label will only be counted
once.

Returns

• actual (numpy.ndarray) – [outputs x inputs] array of actual recall counts.

• possible (numpy.ndarray) – [outputs x inputs] array of possible recall counts.

Examples

>>> from psifr import outputs
>>> pool_items = [[1, 2, 3, 4]]
>>> recall_items = [[4, 2, 3, 1]]
>>> actual, possible = outputs.count_outputs(
... 4, pool_items, recall_items, pool_items, recall_items
...)
>>> actual
array([[0, 0, 0, 1],

[0, 1, 0, 0],
[0, 0, 1, 0],
[1, 0, 0, 0]])

>>> possible
array([[1, 1, 1, 1],

[1, 1, 1, 0],
[1, 0, 1, 0],
[1, 0, 0, 0]])

4.4.2 Iterating over output positions

outputs_masker(pool_items, recall_items, ...) Iterate over valid outputs.

4.4. Outputs 63

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

Psifr, Release v0.8.2

psifr.outputs.outputs_masker

psifr.outputs.outputs_masker(pool_items, recall_items, pool_output, recall_output, pool_test=None,
recall_test=None, test=None)

Iterate over valid outputs.

Parameters

• pool_items (list) – Items available for recall. Order does not matter. May contain re-
peated values. Item identifiers must be unique within pool.

• recall_items (list) – Recalled items in output position order.

• pool_output (list) – Output values for pool items. Must be the same order as pool.

• recall_output (list) – Output values in output position order.

• pool_test (list, optional) – Test values for items available for recall. Must be the
same order as pool.

• recall_test (list, optional) – Test values for items in output position order.

• test (callable, optional) – Used to test whether output recalls and possible recalls
should be included, based on their test values.

Yields

• curr (object) – Output value for the item at this valid output position.

• poss (numpy.array) – Output values for all possible items that could be recalled at this output
position.

• output (int) – Current output position.

Examples

>>> from psifr import outputs
>>> pool_items = [1, 2, 3, 4]
>>> recall_items = [4, 2, 3, 1]
>>> masker = outputs.outputs_masker(
... pool_items, recall_items, pool_items, recall_items
...)
>>> for curr, poss, output in masker:
... print(curr, poss, output)
4 [1 2 3 4] 1
2 [1 2 3] 2
3 [1 3] 3
1 [1] 4

64 Chapter 4. API reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

CHAPTER

FIVE

DEVELOPMENT

5.1 Transitions

Psifr has a core set of tools for analyzing transitions in free recall data. These tools focus on measuring what transitions
actually occurred, and which transitions were possible given the order in which participants recalled items.

5.1.1 Actual and possible transitions

Calculating a conditional response probability involves two parts: the frequency at which a given event actually occurred
in the data and frequency at which a given event could have occurred. The frequency of possible events is calculated
conditional on the recalls that have been made leading up to each transition. For example, a transition between item
𝑖 and item 𝑗 is not considered “possible” in a CRP analysis if item 𝑖 was never recalled. The transition is also not
considered “possible” if, when item 𝑖 is recalled, item 𝑗 has already been recalled previously.

Repeated recall events are typically excluded from the counts of both actual and possible transition events. That is, the
transition event frequencies are conditional on the transition not being either to or from a repeated item.

Calculating a CRP measure involves tallying how many transitions of a given type were made during a free recall test.
For example, one common measure is the serial position lag between items. For a list of length 𝑁 , possible lags are
in the range [−𝑁 + 1, 𝑁 − 1]. Because repeats are excluded, a lag of zero is never possible. The count of actual
and possible transitions for each lag is calculated first, and then the CRP for each lag is calculated as the actual count
divided by the possible count.

5.1.2 The transitions masker

The transitions_masker() is a generator that makes it simple to iterate over transitions while “masking” out events
such as intrusions of items not on the list and repeats of items that have already been recalled.

On each step of the iterator, the output position and the previous, current, and possible items are yielded. The output
position is the position of the transition in the recall sequence, starting from one, including all repeats and intrusions.
The previous item is the item being transitioned from. The current item is the item being transitioned to. The possible
items includes an array of all items that were valid to be recalled next, given the recall sequence up to that point (not
including the current item).

In [1]: from psifr.transitions import transitions_masker

In [2]: pool = [1, 2, 3, 4, 5, 6]

In [3]: recs = [6, 2, 3, 6, 1, 4]

(continues on next page)

65

Psifr, Release v0.8.2

(continued from previous page)

In [4]: masker = transitions_masker(
...: pool_items=pool, recall_items=recs, pool_output=pool, recall_output=recs
...:)
...:

In [5]: for op, prev, curr, poss in masker:
...: print(op, prev, curr, poss)
...:

1 6 2 [1 2 3 4 5]
2 2 3 [1 3 4 5]
5 1 4 [4 5]

Only valid transitions are yielded, so the code for a specific analysis only needs to calculate the transition measure of
interest and count the number of actual and possible transitions in each bin of interest.

Four inputs are required:

pool_items
List of identifiers for all items available for recall. Identifiers can be anything that is unique to each item in the
list (e.g., serial position, a string representation of the item, an index in the stimulus pool).

recall_items
List of identifiers for the sequence of recalls, in order. Valid recalls must match an item in pool_items. Other
items are considered intrusions.

pool_output
Output codes for each item in the pool. This should be whatever you need to calculate your transition measure.

recall_output
Output codes for each recall in the sequence of recalls.

By using different values for these four inputs and defining different transition measures, a wide range of analyses can
be implemented. All conditional response probability and rank analyses are implemented using the same core of the
transitions masker.

5.1.3 The sequences masker

Some analyses, such as lag_crp_compound() and distance_rank_shifted(), require examining longer se-
quences rather than individual one-step transitions. These analyses are implemented using the sequences_masker(),
which allows analysis code to iterate over sequences of a specified length. Only contiguous sequences are yielded; re-
peats or intrusions will interrupt the sequence and start it over at the next recall.

Any other conditions, applied using the test input, must also apply to every transition in the sequence for that sequence
to be yielded by the masker. This makes it simple to, for example, run an analysis that only examines sequences of
within-category transitions. See the user guide for an example of conditionalizing a sequence analysis.

Similarly to the transitions_masker(), the sequences masker will yield the output position, previous item, current
item, and possible items for each transition. Here, however, there is a list of values corresponding to positions within the
sequence. For example, curr[-1] is the “current” item for the most recent transition, and prev[-2] is the “previous”
item for the prior transition.

In [6]: from psifr.transitions import sequences_masker

In [7]: pool = [1, 2, 3, 4, 5, 6]

(continues on next page)

66 Chapter 5. Development

Psifr, Release v0.8.2

(continued from previous page)

In [8]: recs = [6, 2, 3, 6, 1, 4, 5]

In [9]: masker = sequences_masker(
...: 2, pool_items=pool, recall_items=recs, pool_output=pool, recall_output=recs
...:)
...:

In [10]: for output, prev, curr, poss in masker:
....: print(output, prev, curr, poss)
....:

[1, 2] [6, 2] [2, 3] [array([1, 2, 3, 4, 5]), array([1, 3, 4, 5])]
[5, 6] [1, 4] [4, 5] [array([4, 5]), array([5])]

From these outputs, it is then relatively simple to do things like calculate response probabilities conditionalized on
prior transitions (like in the compound lag-CRP analysis) or measure distances to recalls before the just-recalled item
(like in the shifted distance rank analysis).

5.1. Transitions 67

Psifr, Release v0.8.2

68 Chapter 5. Development

CHAPTER

SIX

REFERENCES

69

Psifr, Release v0.8.2

70 Chapter 6. References

BIBLIOGRAPHY

[HK02] Marc W Howard and Michael J Kahana. When Does Semantic Similarity Help Episodic Retrieval? Journal
of Memory and Language, 46(1):85–98, 2002. doi:10.1006/jmla.2001.2798.

[Kah96] Michael Jacob Kahana. Associative retrieval processes in free recall. Memory & Cognition, 24(1):103 109,
1996. doi:10.3758/bf03197276.

[LK14] Lynn J. Lohnas and Michael J. Kahana. Compound cuing in free recall. Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition, 40(1):12, 2014. doi:10.1037/a0033698.

[Mor20] Neal Morton. Psifr: Analysis and visualization of free recall data. Journal of Open Source Software,
5(54):2669, 2020. doi:10.21105/joss.02669.

[MP16] Neal W Morton and Sean M Polyn. A predictive framework for evaluating models of semantic organization
in free recall. Journal of Memory and Language, 86:119 140, 2016. doi:10.1016/j.jml.2015.10.002.

[MP17] Neal W Morton and Sean M Polyn. Beta-band activity represents the recent past during episodic encoding.
NeuroImage, 147:692 702, 2017. doi:10.1016/j.neuroimage.2016.12.049.

[Mur62] Bennet B Murdock. The serial position effect of free recall. Journal of Experimental Psychology, 64(5):482
488, 1962. doi:10.1037/h0045106.

[PNK09] Sean M Polyn, Kenneth A Norman, and Michael Jacob Kahana. A context maintenance and re-
trieval model of organizational processes in free recall. Psychological Review, 116(1):129 156, 2009.
doi:10.1037/a0014420.

[PEK11] Sean M. Polyn, Gennady Erlikhman, and Michael J. Kahana. Semantic cuing and the scale insensitiv-
ity of recency and contiguity. Journal of Experimental Psychology: Learning, Memory, and Cognition,
37(3):766, 2011. doi:10.1037/a0022475.

[RTB71] Daniel L Roenker, Charles P Thompson, and Sam C Brown. Comparison of measures for the estimation of
clustering in free recall. Psychological Bulletin, 76(1):45 48, 01 1971. doi:10.1037/h0031355.

[RKT16] Sandro Romani, Mikhail Katkov, and Misha Tsodyks. Practice makes perfect in memory recall. Learning
& Memory, 23(4):169–173, 2016. doi:10.1101/lm.041178.115.

[SBW+02] John L Stricker, Gregory G Brown, John T Wixted, Juliana V Baldo, and Dean Delis. New seman-
tic and serial clustering indices for the California Verbal Learning Test–Second Edition: Background,
rationale, and formulae. Journal of the International Neuropsychological Society, 8:425 435, 2002.
doi:10.1017/S1355617702813224.

71

https://doi.org/10.1006/jmla.2001.2798
https://doi.org/10.3758/bf03197276
https://doi.org/10.1037/a0033698
https://doi.org/10.21105/joss.02669
https://doi.org/10.1016/j.jml.2015.10.002
https://doi.org/10.1016/j.neuroimage.2016.12.049
https://doi.org/10.1037/h0045106
https://doi.org/10.1037/a0014420
https://doi.org/10.1037/a0022475
https://doi.org/10.1037/h0031355
https://doi.org/10.1101/lm.041178.115
https://doi.org/10.1017/S1355617702813224

Psifr, Release v0.8.2

72 Bibliography

INDEX

Symbols
__init__() (psifr.measures.TransitionMeasure

method), 49

A
analyze() (psifr.measures.TransitionMeasure method),

50
analyze_subject() (psifr.measures.TransitionMeasure

method), 50

B
block_index() (in module psifr.fr), 33

C
category_clustering() (in module psifr.fr), 46
category_crp() (in module psifr.fr), 40
check_data() (in module psifr.fr), 24
count_category() (in module psifr.transitions), 54
count_distance() (in module psifr.transitions), 55
count_lags() (in module psifr.transitions), 51
count_lags_compound() (in module psifr.transitions),

52
count_outputs() (in module psifr.outputs), 62

D
distance_crp() (in module psifr.fr), 41
distance_rank() (in module psifr.fr), 44
distance_rank_shifted() (in module psifr.fr), 45

F
filter_data() (in module psifr.fr), 29

I
item_query (psifr.measures.TransitionMeasure at-

tribute), 49

K
keys (psifr.measures.TransitionMeasure attribute), 49

L
lag_crp() (in module psifr.fr), 37

lag_crp_compound() (in module psifr.fr), 38
lag_rank() (in module psifr.fr), 43

M
merge_free_recall() (in module psifr.fr), 25
merge_lists() (in module psifr.fr), 28

O
outputs_masker() (in module psifr.outputs), 64

P
percentile_rank() (in module psifr.transitions), 56
pli_list_lag() (in module psifr.fr), 36
plot_distance_crp() (in module psifr.fr), 48
plot_lag_crp() (in module psifr.fr), 48
plot_raster() (in module psifr.fr), 47
plot_spc() (in module psifr.fr), 48
plot_swarm_error() (in module psifr.fr), 48
pnr() (in module psifr.fr), 35
pool_index() (in module psifr.fr), 32

R
rank_distance() (in module psifr.transitions), 58
rank_distance_shifted() (in module

psifr.transitions), 59
rank_lags() (in module psifr.transitions), 57
reset_list() (in module psifr.fr), 30

S
sequences_masker() (in module psifr.transitions), 61
spc() (in module psifr.fr), 34
split_lists() (in module psifr.fr), 31
split_lists() (psifr.measures.TransitionMeasure

method), 50

T
table_from_lists() (in module psifr.fr), 23
test (psifr.measures.TransitionMeasure attribute), 49
TransitionMeasure (class in psifr.measures), 49
transitions_masker() (in module psifr.transitions),

60

73

	Installation
	User guide
	Importing data
	Trial information
	Example
	Additional information

	Scoring data
	Scoring list recall
	Filtering and sorting

	Recall performance
	Raster plot
	Serial position curve
	Probability of Nth recall
	Prior-list intrusions

	Recall order
	Lag-CRP
	Compound lag-CRP
	Lag rank
	Category CRP
	Category clustering
	Distance CRP
	Distance rank
	Distance rank shifted
	Restricting analysis to specific items
	Restricting analysis to specific transitions

	Comparing conditions
	Working with custom columns
	Analysis by condition
	Plotting by condition
	Plotting by subject

	Tutorials
	API reference
	Free recall analysis
	Managing data
	psifr.fr.table_from_lists
	psifr.fr.check_data
	psifr.fr.merge_free_recall
	psifr.fr.merge_lists
	psifr.fr.filter_data
	psifr.fr.reset_list
	psifr.fr.split_lists
	psifr.fr.pool_index
	psifr.fr.block_index

	Recall probability
	psifr.fr.spc
	psifr.fr.pnr

	Intrusions
	psifr.fr.pli_list_lag

	Transition probability
	psifr.fr.lag_crp
	psifr.fr.lag_crp_compound
	psifr.fr.category_crp
	psifr.fr.distance_crp

	Transition rank
	psifr.fr.lag_rank
	psifr.fr.distance_rank
	psifr.fr.distance_rank_shifted

	Clustering
	psifr.fr.category_clustering

	Plotting
	psifr.fr.plot_raster
	psifr.fr.plot_spc
	psifr.fr.plot_lag_crp
	psifr.fr.plot_distance_crp
	psifr.fr.plot_swarm_error

	Measures
	Transition measure base class
	psifr.measures.TransitionMeasure
	psifr.measures.TransitionMeasure.split_lists
	psifr.measures.TransitionMeasure.analyze
	psifr.measures.TransitionMeasure.analyze_subject

	Transition measures

	Transitions
	Counting transitions
	psifr.transitions.count_lags
	psifr.transitions.count_lags_compound
	psifr.transitions.count_category
	psifr.transitions.count_distance

	Ranking transitions
	psifr.transitions.percentile_rank
	psifr.transitions.rank_lags
	psifr.transitions.rank_distance
	psifr.transitions.rank_distance_shifted

	Iterating over transitions
	psifr.transitions.transitions_masker
	psifr.transitions.sequences_masker

	Outputs
	Counting recalls by serial position and output position
	psifr.outputs.count_outputs

	Iterating over output positions
	psifr.outputs.outputs_masker

	Development
	Transitions
	Actual and possible transitions
	The transitions masker
	The sequences masker

	References
	Bibliography
	Index

