
Psifr
Release v0.5.1

Neal Morton

Feb 22, 2022





CONTENTS

1 Installation 3

2 User guide 5
2.1 Importing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Scoring data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Recall performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Recall order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Comparing conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Tutorials 15

4 API reference 17
4.1 Free recall analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Development 33
5.1 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Index 35

i



ii



Psifr, Release v0.5.1

In free recall, participants study a list of items and then name all of the items they can remember in any order they
choose. Many sophisticated analyses have been developed to analyze data from free recall experiments, but these
analyses are often complicated and difficult to implement.

Psifr leverages the Pandas data analysis package to make precise and flexible analysis of free recall data faster and
easier.

CONTENTS 1



Psifr, Release v0.5.1

2 CONTENTS



CHAPTER

ONE

INSTALLATION

You can install the latest stable version of Psifr using pip:

pip install psifr

You can also install the development version directly from the code repository on GitHub:

pip install git+git://github.com/mortonne/psifr

3



Psifr, Release v0.5.1

4 Chapter 1. Installation



CHAPTER

TWO

USER GUIDE

2.1 Importing data

In Psifr, free recall data are imported in the form of a “long” format table. Each row corresponds to one study or recall
event. Study events include any time an item was presented to the participant. Recall events correspond to any recall
attempt; this includes repeats of items there were already recalled and intrusions of items that were not present in the
study list.

This type of information is well represented in a CSV spreadsheet, though any file format supported by pandas may be
used for input. To import from a CSV, use pandas. For example:

import pandas as pd
data = pd.read_csv("my_data.csv")

2.1.1 Trial information

The basic information that must be included for each event is the following:

subject Some code (numeric or string) indicating individual participants. Must be unique for a given experiment. For
example, sub-101.

list Numeric code indicating individual lists. Must be unique within subject.

trial_type String indicating whether each event is a study event or a recall event.

position Integer indicating position within a given phase of the list. For study events, this corresponds to input
position (also referred to as serial position). For recall events, this corresponds to output position.

item Individual thing being recalled, such as a word. May be specified with text (e.g., pumpkin, Jack Nicholson)
or a numeric code (682, 121). Either way, the text or number must be unique to that item. Text is easier to read
and does not require any additional information for interpretation and is therefore preferred if available.

2.1.2 Example

Table 1: Sample data
subject list trial_type position item
1 1 study 1 absence
1 1 study 2 hollow
1 1 study 3 pupil
1 1 recall 1 pupil
1 1 recall 2 absence

5



Psifr, Release v0.5.1

2.1.3 Additional information

Additional fields may be included in the data to indicate other aspects of the experiment, such as presentation time,
stimulus category, experimental session, distraction length, etc. All of these fields can then be used for analysis in Psifr.

2.2 Scoring data

After importing free recall data, we have a DataFrame with a row for each study event and a row for each recall event.
Next, we need to score the data by matching study events with recall events.

2.2.1 Scoring list recall

First, let’s create a simple sample dataset with two lists:

In [1]: import pandas as pd

In [2]: data = pd.DataFrame({
...: 'subject': [
...: 1, 1, 1, 1, 1, 1,
...: 1, 1, 1, 1, 1, 1,
...: ],
...: 'list': [
...: 1, 1, 1, 1, 1, 1,
...: 2, 2, 2, 2, 2, 2,
...: ],
...: 'trial_type': [
...: 'study', 'study', 'study', 'recall', 'recall', 'recall',
...: 'study', 'study', 'study', 'recall', 'recall', 'recall',
...: ],
...: 'position': [
...: 1, 2, 3, 1, 2, 3,
...: 1, 2, 3, 1, 2, 3,
...: ],
...: 'item': [
...: 'absence', 'hollow', 'pupil', 'pupil', 'absence', 'empty',
...: 'fountain', 'piano', 'pillow', 'pillow', 'fountain', 'pillow',
...: ],
...: })
...:

In [3]: data
Out[3]:

subject list trial_type position item
0 1 1 study 1 absence
1 1 1 study 2 hollow
2 1 1 study 3 pupil
3 1 1 recall 1 pupil
4 1 1 recall 2 absence
5 1 1 recall 3 empty
6 1 2 study 1 fountain
7 1 2 study 2 piano

(continues on next page)

6 Chapter 2. User guide



Psifr, Release v0.5.1

(continued from previous page)

8 1 2 study 3 pillow
9 1 2 recall 1 pillow
10 1 2 recall 2 fountain
11 1 2 recall 3 pillow

Next, we’ll merge together the study and recall events by matching up corresponding events:

In [4]: from psifr import fr

In [5]: merged = fr.merge_free_recall(data)

In [6]: merged
Out[6]:
subject list item input output study recall repeat intrusion

0 1 1 absence 1.0 2.0 True True 0 False
1 1 1 hollow 2.0 NaN True False 0 False
2 1 1 pupil 3.0 1.0 True True 0 False
3 1 1 empty NaN 3.0 False True 0 True
4 1 2 fountain 1.0 2.0 True True 0 False
5 1 2 piano 2.0 NaN True False 0 False
6 1 2 pillow 3.0 1.0 True True 0 False
7 1 2 pillow 3.0 3.0 False True 1 False

For each item, there is one row for each unique combination of input and output position. For example, if an item is
presented once in the list, but is recalled multiple times, there is one row for each of the recall attempts. Repeated
recalls are indicated by the repeat column, which is greater than zero for recalls of an item after the first. Unique study
events are indicated by the study column; this excludes intrusions and repeated recalls.

Items that were not recalled have the recall column set to False. Because they were not recalled, they have no defined
output position, so output is set to NaN. Finally, intrusions have an output position but no input position because they
did not appear in the list. There is an intrusion field for convenience to label these recall attempts.

merge_free_recall() can also handle additional attributes beyond the standard ones, such as codes indicating stim-
ulus category or list condition. See Working with custom columns for details.

2.2.2 Filtering and sorting

Now that we have a merged DataFrame, we can use pandas methods to quickly get different views of the data. For
some analyses, we may want to organize in terms of the study list by removing repeats and intrusions. Because our
data are in a DataFrame, we can use the DataFrame.query method:

In [7]: merged.query('study')
Out[7]:
subject list item input output study recall repeat intrusion

0 1 1 absence 1.0 2.0 True True 0 False
1 1 1 hollow 2.0 NaN True False 0 False
2 1 1 pupil 3.0 1.0 True True 0 False
4 1 2 fountain 1.0 2.0 True True 0 False
5 1 2 piano 2.0 NaN True False 0 False
6 1 2 pillow 3.0 1.0 True True 0 False

Alternatively, we may also want to get just the recall events, sorted by output position instead of input position:

2.2. Scoring data 7



Psifr, Release v0.5.1

In [8]: merged.query('recall').sort_values(['list', 'output'])
Out[8]:
subject list item input output study recall repeat intrusion

2 1 1 pupil 3.0 1.0 True True 0 False
0 1 1 absence 1.0 2.0 True True 0 False
3 1 1 empty NaN 3.0 False True 0 True
6 1 2 pillow 3.0 1.0 True True 0 False
4 1 2 fountain 1.0 2.0 True True 0 False
7 1 2 pillow 3.0 3.0 False True 1 False

Note that we first sort by list, then output position, to keep the lists together.

2.3 Recall performance

First, load some sample data and create a merged DataFrame:

In [1]: from psifr import fr

In [2]: df = fr.sample_data('Morton2013')

In [3]: data = fr.merge_free_recall(df)

2.3.1 Raster plot

Raster plots can give you a quick overview of a whole dataset. We’ll look at all of the first subject’s recalls. This will
plot every individual recall, colored by the serial position of the recalled item in the list. Items near the end of the list
are shown in yellow, and items near the beginning of the list are shown in purple. Intrusions of items not on the list are
shown in red.

In [4]: subj = fr.filter_data(data, 1)

In [5]: g = fr.plot_raster(subj).add_legend()

2.3.2 Serial position curve

We can calculate average recall for each serial position using spc() and plot using plot_spc().

In [6]: recall = fr.spc(data)

In [7]: g = fr.plot_spc(recall)

Using the same plotting function, we can plot the curve for each individual subject:

In [8]: g = fr.plot_spc(recall, col='subject', col_wrap=5)

8 Chapter 2. User guide



Psifr, Release v0.5.1

2.3.3 Probability of Nth recall

We can also split up recalls, to test for example how likely participants were to initiate recall with the last item on the
list.

In [9]: prob = fr.pnr(data)

In [10]: prob
Out[10]:

prob actual possible
subject output input
1 1 1 0.000000 0 48

2 0.020833 1 48
3 0.000000 0 48
4 0.000000 0 48
5 0.000000 0 48

... ... ... ...
47 24 20 NaN 0 0

21 NaN 0 0
22 NaN 0 0
23 NaN 0 0
24 NaN 0 0

[23040 rows x 3 columns]

This gives us the probability of recall by output position ('output') and serial or input position ('input'). This is a
lot to look at all at once, so it may be useful to plot just the first three output positions. We can plot the curves using
plot_spc(), which takes an optional hue input to specify a variable to use to split the data into curves of different
colors.

In [11]: pfr = prob.query('output <= 3')

In [12]: g = fr.plot_spc(pfr, hue='output').add_legend()

This plot shows what items tend to be recalled early in the recall sequence.

2.4 Recall order

A key advantage of free recall is that it provides information not only about what items are recalled, but also the order
in which they are recalled. A number of analyses have been developed to charactize different influences on recall order,
such as the temporal order in which the items were presented at study, the category of the items themselves, or the
semantic similarity between pairs of items.

Each conditional response probability (CRP) analysis involves calculating the probability of some type of transition
event. For the lag-CRP analysis, transition events of interest are the different lags between serial positions of items
recalled adjacent to one another. Similar analyses focus not on the serial position in which items are presented, but the
properties of the items themselves. A semantic-CRP analysis calculates the probability of transitions between items in
different semantic relatedness bins. A special case of this analysis is when item pairs are placed into one of two bins,
depending on whether they are in the same stimulus category or not. In Psifr, this is referred to as a category-CRP
analysis.

2.4. Recall order 9



Psifr, Release v0.5.1

2.4.1 Lag-CRP

In all CRP analyses, transition probabilities are calculated conditional on a given transition being available. For ex-
ample, in a six-item list, if the items 6, 1, and 4 have been recalled, then possible items that could have been recalled
next are 2, 3, or 5; therefore, possible lags at that point in the recall sequence are -2, -1, or +1. The number of actual
transitions observed for each lag is divided by the number of times that lag was possible, to obtain the CRP for each
lag.

First, load some sample data and create a merged DataFrame:

In [1]: from psifr import fr

In [2]: df = fr.sample_data('Morton2013')

In [3]: data = fr.merge_free_recall(df, study_keys=['category'])

Next, call lag_crp() to calculate conditional response probability as a function of lag.

In [4]: crp = fr.lag_crp(data)

In [5]: crp
Out[5]:

prob actual possible
subject lag
1 -23.0 0.020833 1 48

-22.0 0.035714 3 84
-21.0 0.026316 3 114
-20.0 0.024000 3 125
-19.0 0.014388 2 139

... ... ... ...
47 19.0 0.061224 3 49

20.0 0.055556 2 36
21.0 0.045455 1 22
22.0 0.071429 1 14
23.0 0.000000 0 6

[1880 rows x 3 columns]

The results show the count of times a given transition actually happened in the observed recall sequences (actual)
and the number of times a transition could have occurred (possible). Finally, the prob column gives the estimated
probability of a given transition occurring, calculated by dividing the actual count by the possible count.

Use plot_lag_crp() to display the results:

In [6]: g = fr.plot_lag_crp(crp)

The peaks at small lags (e.g., +1 and -1) indicate that the recall sequences show evidence of a temporal contiguity
effect; that is, items presented near to one another in the list are more likely to be recalled successively than items that
are distant from one another in the list.

10 Chapter 2. User guide



Psifr, Release v0.5.1

2.4.2 Lag rank

We can summarize the tendency to group together nearby items using a lag rank analysis. For each recall, this deter-
mines the absolute lag of all remaining items available for recall and then calculates their percentile rank. Then the
rank of the actual transition made is taken, scaled to vary between 0 (furthest item chosen) and 1 (nearest item chosen).
Chance clustering will be 0.5; clustering above that value is evidence of a temporal contiguity effect.

In [7]: ranks = fr.lag_rank(data)

In [8]: ranks
Out[8]:

rank
subject
1 0.610953
2 0.635676
3 0.612607
4 0.667090
5 0.643923
... ...
43 0.554024
44 0.561005
45 0.598151
46 0.652748
47 0.621245

[40 rows x 1 columns]

In [9]: ranks.agg(['mean', 'sem'])
Out[9]:

rank
mean 0.624699
sem 0.006732

2.4.3 Category CRP

If there are multiple categories or conditions of trials in a list, we can test whether participants tend to successively
recall items from the same category. The category-CRP estimates the probability of successively recalling two items
from the same category.

In [10]: cat_crp = fr.category_crp(data, category_key='category')

In [11]: cat_crp
Out[11]:

prob actual possible
subject
1 0.801147 419 523
2 0.733456 399 544
3 0.763158 377 494
4 0.814882 449 551
5 0.877273 579 660
... ... ... ...
43 0.809187 458 566

(continues on next page)

2.4. Recall order 11



Psifr, Release v0.5.1

(continued from previous page)

44 0.744376 364 489
45 0.763780 388 508
46 0.763573 436 571
47 0.806907 514 637

[40 rows x 3 columns]

In [12]: cat_crp[['prob']].agg(['mean', 'sem'])
Out[12]:

prob
mean 0.782693
sem 0.006262

The expected probability due to chance depends on the number of categories in the list. In this case, there are three
categories, so a category CRP of 0.33 would be predicted if recalls were sampled randomly from the list.

2.5 Comparing conditions

When analyzing a dataset, it’s often important to compare different experimental conditions. Psifr is built on the Pandas
DataFrame, which has powerful ways of splitting data and applying operations to it. This makes it possible to analyze
and plot different conditions using very little code.

2.5.1 Working with custom columns

First, load some sample data and create a merged DataFrame:

In [1]: from psifr import fr

In [2]: df = fr.sample_data('Morton2013')

In [3]: data = fr.merge_free_recall(
...: df, study_keys=['category'], list_keys=['list_type']
...: )
...:

In [4]: data.head()
Out[4]:
subject list item input ... repeat intrusion list_type category

0 1 1 TOWEL 1.0 ... 0 False pure obj
1 1 1 LADLE 2.0 ... 0 False pure obj
2 1 1 THERMOS 3.0 ... 0 False pure obj
3 1 1 LEGO 4.0 ... 0 False pure obj
4 1 1 BACKPACK 5.0 ... 0 False pure obj

[5 rows x 11 columns]

The merge_free_recall() function only includes columns from the raw data if they are one of the standard columns
or if they’ve explictly been included using study_keys, recall_keys, or list_keys. list_keys apply to all events
in a list, while study_keys and recall_keys are relevant only for study and recall events, respectively.

12 Chapter 2. User guide



Psifr, Release v0.5.1

We’ve included a list key here, to indicate that the list_type field should be included for all study and recall events
in each list, even intrusions. The category field will be included for all study events and all valid recalls. Intrusions
will have an undefined category.

2.5.2 Analysis by condition

Now we can run any analysis separately for the different conditions. We’ll use the serial position curve analysis as an
example.

In [5]: spc = data.groupby('list_type').apply(fr.spc)

In [6]: spc.head()
Out[6]:

recall
list_type subject input
mixed 1 1.0 0.500000

2.0 0.466667
3.0 0.600000
4.0 0.300000
5.0 0.333333

The spc DataFrame has separate groups with the results for each list_type.

Warning: When using groupby with order-based analyses like lag_crp(), make sure all recalls in all recall
sequences for a given list have the same label. Otherwise, you will be breaking up recall sequences, which could
result in an invalid analysis.

2.5.3 Plotting by condition

We can then plot a separate curve for each condition. All plotting functions take optional hue, col, col_wrap, and
row inputs that can be used to divide up data when plotting. See the Seaborn documentation for details. Most inputs
to seaborn.relplot() are supported.

For example, we can plot two curves for the different list types:

In [7]: g = fr.plot_spc(spc, hue='list_type').add_legend()

We can also plot the curves in different axes using the col option:

In [8]: g = fr.plot_spc(spc, col='list_type')

We can also plot all combinations of two conditions:

In [9]: spc_split = data.groupby(['list_type', 'category']).apply(fr.spc)

In [10]: g = fr.plot_spc(spc_split, col='list_type', row='category')

2.5. Comparing conditions 13

https://seaborn.pydata.org/generated/seaborn.relplot.html


Psifr, Release v0.5.1

2.5.4 Plotting by subject

All analyses can be plotted separately by subject. A nice way to do this is using the col and col_wrap optional inputs,
to make a grid of plots with 6 columns per row:

In [11]: g = fr.plot_spc(
....: spc, hue='list_type', col='subject', col_wrap=6, height=2
....: ).add_legend()
....:

14 Chapter 2. User guide



CHAPTER

THREE

TUTORIALS

See the psifr-notebooks project for a set of Jupyter notebooks with sample code. These examples go more in depth into
the options available for each analysis and how they can be used for advanced analyses such as conditionalizing CRP
analysis on specific transitions.

15

https://github.com/mortonne/psifr-notebooks


Psifr, Release v0.5.1

16 Chapter 3. Tutorials



CHAPTER

FOUR

API REFERENCE

4.1 Free recall analysis

4.1.1 Managing data

merge_free_recall(data, **kwargs) Merge standard free recall events.
merge_lists(study, recall[, merge_keys, ...]) Merge study and recall events together for each list.
filter_data(data[, subjects, lists, ...]) Filter data to get a subset of trials.
reset_list(df) Reset list index in a DataFrame.
split_lists(frame, phase, keys[, names, ...]) Convert free recall data from one phase to split format.

psifr.fr.merge_free_recall

psifr.fr.merge_free_recall(data, **kwargs)
Merge standard free recall events.

Split study and recall events and then merge them. See merge_lists for details.

psifr.fr.merge_lists

psifr.fr.merge_lists(study, recall, merge_keys=None, list_keys=None, study_keys=None, recall_keys=None,
position_key='position')

Merge study and recall events together for each list.

Parameters

• study (pandas.DataFrame) – Information about all study events. Should have one row for
each study event.

• recall (pandas.DataFrame) – Information about all recall events. Should have one row
for each recall attempt.

• merge_keys (list, optional) – Columns to use to designate events to merge. Default
is [‘subject’, ‘list’, ‘item’], which will merge events related to the same item, but only within
list.

• list_keys (list, optional) – Columns that apply to both study and recall events.

• study_keys (list, optional) – Columns that only apply to study events.

• recall_keys (list, optional) – Columns that only apply to recall events.

17



Psifr, Release v0.5.1

• position_key (str, optional) – Column indicating the position of each item in either
the study list or the recall sequence.

Returns

merged – Merged information about study and recall events. Each row corresponds to one unique
input/output pair.

The following columns will be added:

input [int] Position of each item in the input list (i.e., serial position).

output [int] Position of each item in the recall sequence.

study [bool] True for rows corresponding to a unique study event.

recall [bool] True for rows corresponding to a unique recall event.

repeat [int] Number of times this recall event has been repeated (0 for the first recall of an item).

intrusion [bool] True for recalls that do not correspond to any study event.

Return type pandas.DataFrame

psifr.fr.filter_data

psifr.fr.filter_data(data, subjects=None, lists=None, trial_type=None, positions=None, inputs=None,
outputs=None)

Filter data to get a subset of trials.

psifr.fr.reset_list

psifr.fr.reset_list(df )
Reset list index in a DataFrame.

psifr.fr.split_lists

psifr.fr.split_lists(frame, phase, keys, names=None, item_query=None, as_list=False)
Convert free recall data from one phase to split format.

4.1.2 Recall probability

spc(df) Serial position curve.
pnr(df[, item_query, test_key, test]) Probability of recall by serial position and output posi-

tion.

18 Chapter 4. API reference



Psifr, Release v0.5.1

psifr.fr.spc

psifr.fr.spc(df )
Serial position curve.

Parameters df (pandas.DataFrame) – Merged study and recall data. See merge_lists.

Returns

recall – Index includes:

subject [hashable] Subject identifier.

input [int] Serial position in the list.

Values are:

recall [float] Recall probability for each serial position.

Return type pandas.Series

psifr.fr.pnr

psifr.fr.pnr(df, item_query=None, test_key=None, test=None)
Probability of recall by serial position and output position.

Calculate probability of Nth recall, where N is each output position. Invalid recalls (repeats and intrusions) are
ignored and not counted toward output position.

Parameters

• df (pandas.DataFrame) – Merged study and recall data. See merge_lists. List length is
assumed to be the same for all lists within each subject. Must have fields: subject, list, input,
output, study, recall. Input position must be defined such that the first serial position is 1, not
0.

• item_query (str, optional) – Query string to select items to include in the pool of
possible recalls to be examined. See pandas.DataFrame.query for allowed format.

• test_key (str, optional) – Name of column with labels to use when testing transitions
for inclusion.

• test (callable, optional) – Callable that takes in previous and current item values and
returns True for transitions that should be included.

Returns prob – Analysis results. Has fields: subject, output, input, prob, actual, possible. The prob
column for output x and input y indicates the probability of recalling input position y at output
position x. The actual and possible columns give the raw tallies for how many times an event
actually occurred and how many times it was possible given the recall sequence.

Return type pandas.DataFrame

4.1. Free recall analysis 19



Psifr, Release v0.5.1

4.1.3 Transition probability

lag_crp(df[, item_query, test_key, test]) Lag-CRP for multiple subjects.
category_crp(df, category_key[, item_query, ...]) Conditional response probability of within-category

transitions.
distance_crp(df, index_key, distances, edges) Conditional response probability by distance bin.

psifr.fr.lag_crp

psifr.fr.lag_crp(df, item_query=None, test_key=None, test=None)
Lag-CRP for multiple subjects.

Parameters

• df (pandas.DataFrame) – Merged study and recall data. See merge_lists. List length is
assumed to be the same for all lists within each subject. Must have fields: subject, list, input,
output, recalled. Input position must be defined such that the first serial position is 1, not 0.

• item_query (str, optional) – Query string to select items to include in the pool of
possible recalls to be examined. See pandas.DataFrame.query for allowed format.

• test_key (str, optional) – Name of column with labels to use when testing transitions
for inclusion.

• test (callable, optional) – Callable that takes in previous and current item values and
returns True for transitions that should be included.

Returns

results – Has fields:

subject [hashable] Results are separated by each subject.

lag [int] Lag of input position between two adjacent recalls.

prob [float] Probability of each lag transition.

actual [int] Total of actual made transitions at each lag.

possible [int] Total of times each lag was possible, given the prior input position and the remain-
ing items to be recalled.

Return type pandas.DataFrame

psifr.fr.category_crp

psifr.fr.category_crp(df, category_key, item_query=None, test_key=None, test=None)
Conditional response probability of within-category transitions.

Parameters

• df (pandas.DataFrame) – Merged study and recall data. See merge_lists. List length is
assumed to be the same for all lists within each subject. Must have fields: subject, list, input,
output, recalled.

• category_key (str) – Name of column with category labels.

• item_query (str, optional) – Query string to select items to include in the pool of
possible recalls to be examined. See pandas.DataFrame.query for allowed format.

20 Chapter 4. API reference



Psifr, Release v0.5.1

• test_key (str, optional) – Name of column with labels to use when testing transitions
for inclusion.

• test (callable, optional) – Callable that takes in previous and current item values and
returns True for transitions that should be included.

Returns

results – Has fields:

subject [hashable] Results are separated by each subject.

prob [float] Probability of each lag transition.

actual [int] Total of actual made transitions at each lag.

possible [int] Total of times each lag was possible, given the prior input position and the remain-
ing items to be recalled.

Return type pandas.DataFrame

psifr.fr.distance_crp

psifr.fr.distance_crp(df, index_key, distances, edges, centers=None, count_unique=False, item_query=None,
test_key=None, test=None)

Conditional response probability by distance bin.

Parameters

• df (pandas.DataFrame) – Merged free recall data.

• index_key (str) – Name of column containing the index of each item in the distances
matrix.

• distances (numpy.array) – Items x items matrix of pairwise distances or similarities.

• edges (array-like) – Edges of bins to apply to the distances.

• centers (array-like, optional) – Centers to label each bin with. If not specified, the
center point between edges will be used.

• count_unique (bool, optional) – If true, possible transitions to a given distance bin
will only count once for a given transition.

• item_query (str, optional) – Query string to select items to include in the pool of
possible recalls to be examined. See pandas.DataFrame.query for allowed format.

• test_key (str, optional) – Name of column with labels to use when testing transitions
for inclusion.

• test (callable, optional) – Callable that takes in previous and current item values and
returns True for transitions that should be included.

Returns

crp – Has fields:

subject [hashable] Results are separated by each subject.

bin [int] Distance bin.

prob [float] Probability of each distance bin.

actual [int] Total of actual transitions for each distance bin.

4.1. Free recall analysis 21



Psifr, Release v0.5.1

possible [int] Total of times each distance bin was possible, given the prior input position and
the remaining items to be recalled.

Return type pandas.DataFrame

4.1.4 Transition rank

lag_rank(df[, item_query, test_key, test]) Calculate rank of the absolute lags in free recall lists.
distance_rank(df, index_key, distances[, ...]) Calculate rank of transition distances in free recall lists.

psifr.fr.lag_rank

psifr.fr.lag_rank(df, item_query=None, test_key=None, test=None)
Calculate rank of the absolute lags in free recall lists.

Parameters

• df (pandas.DataFrame) – Merged study and recall data. See merge_lists. List length is
assumed to be the same for all lists within each subject. Must have fields: subject, list, input,
output, recalled. Input position must be defined such that the first serial position is 1, not 0.

• item_query (str, optional) – Query string to select items to include in the pool of
possible recalls to be examined. See pandas.DataFrame.query for allowed format.

• test_key (str, optional) – Name of column with labels to use when testing transitions
for inclusion.

• test (callable, optional) – Callable that takes in previous and current item values and
returns True for transitions that should be included.

Returns stat – Has fields ‘subject’ and ‘rank’.

Return type pandas.DataFrame

psifr.fr.distance_rank

psifr.fr.distance_rank(df, index_key, distances, item_query=None, test_key=None, test=None)
Calculate rank of transition distances in free recall lists.

Parameters

• df (pandas.DataFrame) – Merged study and recall data. See merge_lists. List length is
assumed to be the same for all lists within each subject. Must have fields: subject, list, input,
output, recalled. Input position must be defined such that the first serial position is 1, not 0.

• index_key (str) – Name of column containing the index of each item in the distances
matrix.

• distances (numpy.array) – Items x items matrix of pairwise distances or similarities.

• item_query (str, optional) – Query string to select items to include in the pool of
possible recalls to be examined. See pandas.DataFrame.query for allowed format.

• test_key (str, optional) – Name of column with labels to use when testing transitions
for inclusion.

• test (callable, optional) – Callable that takes in previous and current item values and
returns True for transitions that should be included.

22 Chapter 4. API reference



Psifr, Release v0.5.1

Returns stat – Has fields ‘subject’ and ‘rank’.

Return type pandas.DataFrame

4.1.5 Plotting

plot_raster(df[, hue, palette, marker, ...]) Plot recalls in a raster plot.
plot_spc(recall, **facet_kws) Plot a serial position curve.
plot_lag_crp(recall[, max_lag]) Plot conditional response probability by lag.
plot_distance_crp(crp[, min_samples]) Plot response probability by distance bin.
plot_swarm_error(data[, x, y, swarm_color, ...]) Plot points as a swarm plus mean with error bars.

psifr.fr.plot_raster

psifr.fr.plot_raster(df, hue='input', palette=None, marker='s', intrusion_color=None,
orientation='horizontal', length=6, aspect=None, legend='auto', **facet_kws)

Plot recalls in a raster plot.

psifr.fr.plot_spc

psifr.fr.plot_spc(recall, **facet_kws)
Plot a serial position curve.

Additional arguments are passed to seaborn.relplot.

Parameters recall (pandas.DataFrame) – Results from calling spc.

psifr.fr.plot_lag_crp

psifr.fr.plot_lag_crp(recall, max_lag=5, **facet_kws)
Plot conditional response probability by lag.

Additional arguments are passed to seaborn.FacetGrid.

Parameters

• recall (pandas.DataFrame) – Results from calling lag_crp.

• max_lag (int) – Maximum absolute lag to plot.

psifr.fr.plot_distance_crp

psifr.fr.plot_distance_crp(crp, min_samples=None, **facet_kws)
Plot response probability by distance bin.

Parameters

• crp (pandas.DataFrame) – Results from fr.distance_crp.

• min_samples (int) – Minimum number of samples a bin must have per subject to include
in the plot.

• **facet_kws – Additional inputs to pass to seaborn.relplot.

4.1. Free recall analysis 23



Psifr, Release v0.5.1

psifr.fr.plot_swarm_error

psifr.fr.plot_swarm_error(data, x=None, y=None, swarm_color=None, swarm_size=5, point_color='k',
**facet_kws)

Plot points as a swarm plus mean with error bars.

4.2 Measures

4.2.1 Transition measure base class

TransitionMeasure(items_key, label_key[, ...]) Measure of free recall dataset with multiple subjects.
TransitionMeasure.split_lists(data, phase) Get relevant fields and split by list.
TransitionMeasure.analyze(data) Analyze a free recall dataset with multiple subjects.
TransitionMeasure.analyze_subject(subject, ...) Analyze a single subject.

psifr.measures.TransitionMeasure

class psifr.measures.TransitionMeasure(items_key, label_key, item_query=None, test_key=None,
test=None)

Measure of free recall dataset with multiple subjects.

Parameters

• items_key (str) – Data column with item identifiers.

• label_key (str) – Data column with trial labels to use for the measure.

• item_query (str) – Query string to indicate trials to include in the measure.

• test_key (str) – Data column with labels to use when testing for trial inclusion.

• test (callable) – Test of trial inclusion. Takes the previous and current test values and
return True if the transition should be included.

keys
List of columns to use for the measure.

Type dict of {str: str}

item_query
Query string to indicate trials to include in the measure.

Type str

test
Test of trial inclusion.

Type callable

__init__(items_key, label_key, item_query=None, test_key=None, test=None)

24 Chapter 4. API reference



Psifr, Release v0.5.1

Methods

__init__(items_key, label_key[, item_query, ...])

analyze(data) Analyze a free recall dataset with multiple subjects.
analyze_subject(subject, pool_lists, ...) Analyze a single subject.
split_lists(data, phase) Get relevant fields and split by list.

psifr.measures.TransitionMeasure.split_lists

TransitionMeasure.split_lists(data, phase)
Get relevant fields and split by list.

Parameters

• data (pandas.DataFrame) – Raw free recall data.

• phase (str) – Phase to split (‘study’ or ‘recall’).

psifr.measures.TransitionMeasure.analyze

TransitionMeasure.analyze(data)
Analyze a free recall dataset with multiple subjects.

Parameters data (pandas.DataFrame) – Raw (not merged) free recall data.

Returns stat – Statistics calculated for each subject.

Return type pandas.DataFrame

psifr.measures.TransitionMeasure.analyze_subject

abstract TransitionMeasure.analyze_subject(subject, pool_lists, recall_lists)
Analyze a single subject.

Parameters

• subject (int or str) – Identifier of the subject to analyze.

• pool_lists (dict of lists of numpy.ndarray) – Information about the item pool
for each list, with keys for items, label, and test arrays.

• recall_lists (dict of lists of numpy.ndarray) – Information about the recall se-
quence for each list, with keys for items, label, and test arrays.

Returns Results of the analysis for one subject. Should include a ‘subject’ column in the index.

Return type pandas.DataFrame

4.2. Measures 25



Psifr, Release v0.5.1

4.2.2 Transition measures

TransitionOutputs(list_length[, item_query, ...]) Measure recall probability by input and output position.
TransitionLag(list_length[, item_query, ...]) Measure conditional response probability by lag.
TransitionLagRank([item_query, test_key, test]) Measure lag rank of transitions.
TransitionCategory(category_key[, ...]) Measure conditional response probability by category

transition.
TransitionDistance(index_key, distances, edges) Measure conditional response probability by distance.
TransitionDistanceRank(index_key, distances) Measure transition rank by distance.

4.3 Transitions

4.3.1 Counting transitions

count_lags(list_length, pool_items, recall_items) Count actual and possible serial position lags.
count_category(pool_items, recall_items, ...) Count within-category transitions.
count_distance(distances, edges, pool_items, ...) Count transitions within distance bins.

psifr.transitions.count_lags

psifr.transitions.count_lags(list_length, pool_items, recall_items, pool_label=None, recall_label=None,
pool_test=None, recall_test=None, test=None, count_unique=False)

Count actual and possible serial position lags.

Parameters

• list_length (int) – Number of items in each list.

• pool_items (list) – List of the serial positions available for recall in each list. Must match
the serial position codes used in recall_items.

• recall_items (list) – List indicating the serial position of each recall in output order
(NaN for intrusions).

• pool_label (list, optional) – List of the positions to use for calculating lag. Default
is to use pool_items.

• recall_label (list, optional) – List of position labels in recall order. Default is to
use recall_items.

• pool_test (list, optional) – List of some test value for each item in the pool.

• recall_test (list, optional) – List of some test value for each recall attempt by output
position.

• test (callable) – Callable that evaluates each transition between items n and n+1. Must
take test values for items n and n+1 and return True if a given transition should be included.

• count_unique (bool, optional) – If true, only unique values will be counted toward the
possible transitions. If multiple items are avilable for recall for a given transition and a given
bin, that bin will only be incremented once. If false, all possible transitions will add to the
count.

26 Chapter 4. API reference



Psifr, Release v0.5.1

psifr.transitions.count_category

psifr.transitions.count_category(pool_items, recall_items, pool_category, recall_category,
pool_test=None, recall_test=None, test=None)

Count within-category transitions.

psifr.transitions.count_distance

psifr.transitions.count_distance(distances, edges, pool_items, recall_items, pool_index, recall_index,
pool_test=None, recall_test=None, test=None, count_unique=False)

Count transitions within distance bins.

Parameters

• distances (numpy.array) – Items x items matrix of pairwise distances or similarities.

• edges (array-like) – Edges of bins to apply to distances.

• pool_items (list of list) – Unique item codes for each item in the pool available for
recall.

• recall_items (list of list) – Unique item codes of recalled items.

• pool_index (list of list) – Index of each item in the distances matrix.

• recall_index (list of list) – Index of each recalled item.

• pool_test (list of list, optional) – Test value for each item in the pool.

• recall_test (list of list, optional) – Test value for each recalled item.

• test (callable) – Called as test(prev, curr) or test(prev, poss) to screen actual and possible
transitions, respectively.

• count_unique (bool, optional) – If true, only unique values will be counted toward the
possible transitions. If multiple items are avilable for recall for a given transition and a given
bin, that bin will only be incremented once. If false, all possible transitions will add to the
count.

Returns

• actual (pandas.Series) – Count of actual transitions made for each bin.

• possible (pandas.Series) – Count of possible transitions for each bin.

4.3.2 Ranking transitions

percentile_rank(actual, possible) Get percentile rank of a score compared to possible
scores.

rank_lags(pool_items, recall_items[, ...]) Calculate rank of absolute lag for free recall lists.
rank_distance(distances, pool_items, ...[, ...]) Calculate percentile rank of transition distances.

4.3. Transitions 27



Psifr, Release v0.5.1

psifr.transitions.percentile_rank

psifr.transitions.percentile_rank(actual, possible)
Get percentile rank of a score compared to possible scores.

psifr.transitions.rank_lags

psifr.transitions.rank_lags(pool_items, recall_items, pool_label=None, recall_label=None,
pool_test=None, recall_test=None, test=None)

Calculate rank of absolute lag for free recall lists.

Parameters

• pool_items (list) – List of the serial positions available for recall in each list. Must match
the serial position codes used in recall_items.

• recall_items (list) – List indicating the serial position of each recall in output order
(NaN for intrusions).

• pool_label (list, optional) – List of the positions to use for calculating lag. Default
is to use pool_items.

• recall_label (list, optional) – List of position labels in recall order. Default is to
use recall_items.

• pool_test (list, optional) – List of some test value for each item in the pool.

• recall_test (list, optional) – List of some test value for each recall attempt by output
position.

• test (callable) – Callable that evaluates each transition between items n and n+1. Must
take test values for items n and n+1 and return True if a given transition should be included.

Returns rank – Absolute lag percentile rank for each included transition. The rank is 0 if the lag was
the most distant of the available transitions, and 1 if the lag was the closest. Ties are assigned to
the average percentile rank.

Return type list

psifr.transitions.rank_distance

psifr.transitions.rank_distance(distances, pool_items, recall_items, pool_index, recall_index,
pool_test=None, recall_test=None, test=None)

Calculate percentile rank of transition distances.

Parameters

• distances (numpy.array) – Items x items matrix of pairwise distances or similarities.

• pool_items (list of list) – Unique item codes for each item in the pool available for
recall.

• recall_items (list of list) – Unique item codes of recalled items.

• pool_index (list of list) – Index of each item in the distances matrix.

• recall_index (list of list) – Index of each recalled item.

• pool_test (list of list, optional) – Test value for each item in the pool.

• recall_test (list of list, optional) – Test value for each recalled item.

28 Chapter 4. API reference



Psifr, Release v0.5.1

• test (callable) – Called as test(prev, curr) or test(prev, poss) to screen actual and possible
transitions, respectively.

Returns rank – Distance percentile rank for each included transition. The rank is 0 if the distance
was the largest of the available transitions, and 1 if the distance was the smallest. Ties are assigned
to the average percentile rank.

Return type list

4.3.3 Iterating over transitions

transitions_masker(pool_items, recall_items, ...) Iterate over transitions with masking.

psifr.transitions.transitions_masker

psifr.transitions.transitions_masker(pool_items, recall_items, pool_output, recall_output,
pool_test=None, recall_test=None, test=None)

Iterate over transitions with masking.

Transitions are between a “previous” item and a “current” item. Non-included transitions will be skipped. A
transition is yielded only if it matches the following conditions:

(1) Each item involved in the transition is in the pool. Items are removed from the pool after they appear as the
previous item.

(2) Optionally, an additional check is run based on test values associated with the items in the transition. For
example, this could be used to only include transitions where the category of the previous and current items is
the same.

The masker will yield “output” values, which may be distinct from the item identifiers used to determine item
repeats.

Parameters

• pool_items (list) – Items available for recall. Order does not matter. May contain re-
peated values. Item identifiers must be unique within pool.

• recall_items (list) – Recalled items in output position order.

• pool_output (list) – Output values for pool items. Must be the same order as pool.

• recall_output (list) – Output values in output position order.

• pool_test (list, optional) – Test values for items available for recall. Must be the
same order as pool.

• recall_test (list, optional) – Test values for items in output position order.

• test (callable, optional) – Used to test whether individual transitions should be in-
cluded, based on test values.

test(prev, curr) - test for included transition

test(prev, poss) - test for included possible transition

Yields

• prev (object) – Output value for the “from” item on this transition.

• curr (object) – Output value for the “to” item.

4.3. Transitions 29



Psifr, Release v0.5.1

• poss (numpy.array) – Output values for all possible valid “to” items.

4.4 Outputs

4.4.1 Counting recalls by serial position and output position

count_outputs(list_length, pool_items, ...) Count actual and possible recalls for each output posi-
tion.

psifr.outputs.count_outputs

psifr.outputs.count_outputs(list_length, pool_items, recall_items, pool_label, recall_label, pool_test=None,
recall_test=None, test=None, count_unique=False)

Count actual and possible recalls for each output position.

Parameters

• list_length (int) – Number of items in each list.

• pool_items (list) – List of the serial positions available for recall in each list. Must match
the serial position codes used in recall_items.

• recall_items (list) – List indicating the serial position of each recall in output order
(NaN for intrusions).

• pool_label (list, optional) – List of the positions to use for calculating lag. Default
is to use pool_items.

• recall_label (list, optional) – List of position labels in recall order. Default is to
use recall_items.

• pool_test (list, optional) – List of some test value for each item in the pool.

• recall_test (list, optional) – List of some test value for each recall attempt by output
position.

• test (callable) – Callable that evaluates each transition between items n and n+1. Must
take test values for items n and n+1 and return True if a given transition should be included.

• count_unique (bool) – If true, possible recalls with the same label will only be counted
once.

4.4.2 Iterating over output positions

outputs_masker(pool_items, recall_items, ...) Iterate over valid outputs.

30 Chapter 4. API reference



Psifr, Release v0.5.1

psifr.outputs.outputs_masker

psifr.outputs.outputs_masker(pool_items, recall_items, pool_output, recall_output, pool_test=None,
recall_test=None, test=None)

Iterate over valid outputs.

Parameters

• pool_items (list) – Items available for recall. Order does not matter. May contain re-
peated values. Item identifiers must be unique within pool.

• recall_items (list) – Recalled items in output position order.

• pool_output (list) – Output values for pool items. Must be the same order as pool.

• recall_output (list) – Output values in output position order.

• pool_test (list, optional) – Test values for items available for recall. Must be the
same order as pool.

• recall_test (list, optional) – Test values for items in output position order.

• test (callable, optional) – Used to test whether output recalls and possible recalls
should be included, based on their test values.

Yields

• curr (object) – Output value for the item at this valid output position.

• poss (numpy.array) – Output values for all possible items that could be recalled at this output
position.

• output (int) – Current output position.

4.4. Outputs 31



Psifr, Release v0.5.1

32 Chapter 4. API reference



CHAPTER

FIVE

DEVELOPMENT

5.1 Transitions

Psifr has a core set of tools for analyzing transitions in free recall data. These tools focus on measuring what transitions
actually occurred, and which transitions were possible given the order in which participants recalled items.

5.1.1 Actual and possible transitions

Calculating a conditional response probability involves two parts: the frequency at which a given event actually occurred
in the data and frequency at which a given event could have occurred. The frequency of possible events is calculated
conditional on the recalls that have been made leading up to each transition. For example, a transition between item
𝑖 and item 𝑗 is not considered “possible” in a CRP analysis if item 𝑖 was never recalled. The transition is also not
considered “possible” if, when item 𝑖 is recalled, item 𝑗 has already been recalled previously.

Repeated recall events are typically excluded from the counts of both actual and possible transition events. That is, the
transition event frequencies are conditional on the transition not being either to or from a repeated item.

Calculating a CRP measure involves tallying how many transitions of a given type were made during a free recall test.
For example, one common measure is the serial position lag between items. For a list of length 𝑁 , possible lags are
in the range [−𝑁 + 1, 𝑁 − 1]. Because repeats are excluded, a lag of zero is never possible. The count of actual
and possible transitions for each lag is calculated first, and then the CRP for each lag is calculated as the actual count
divided by the possible count.

5.1.2 The transitions masker

The psifr.transitions.transitions_masker() is a generator that makes it simple to iterate over transitions
while “masking” out events such as intrusions of items not on the list and repeats of items that have already been
recalled.

On each step of the iterator, the previous, current, and possible items are yielded. The previous item is the item being
transitioned from. The current item is the item being transitioned to. The possible items includes an array of all items
that were valid to be recalled next, given the recall sequence up to that point (not including the current item).

In [1]: from psifr.transitions import transitions_masker

In [2]: pool = [1, 2, 3, 4, 5, 6]

In [3]: recs = [6, 2, 3, 6, 1, 4]

In [4]: masker = transitions_masker(pool_items=pool, recall_items=recs,
(continues on next page)

33



Psifr, Release v0.5.1

(continued from previous page)

...: pool_output=pool, recall_output=recs)

...:

In [5]: for prev, curr, poss in masker:
...: print(prev, curr, poss)
...:

6 2 [1 2 3 4 5]
2 3 [1 3 4 5]
1 4 [4 5]

Only valid transitions are yielded, so the code for a specific analysis only needs to calculate the transition measure of
interest and count the number of actual and possible transitions in each bin of interest.

Four inputs are required:

pool_items List of identifiers for all items available for recall. Identifiers can be anything that is unique to each item
in the list (e.g., serial position, a string representation of the item, an index in the stimulus pool).

recall_items List of identifiers for the sequence of recalls, in order. Valid recalls must match an item in pool_items.
Other items are considered intrusions.

pool_output Output codes for each item in the pool. This should be whatever you need to calculate your transition
measure.

recall_output Output codes for each recall in the sequence of recalls.

By using different values for these four inputs and defining different transition measures, a wide range of analyses can
be implemented.

34 Chapter 5. Development



INDEX

Symbols
__init__() (psifr.measures.TransitionMeasure

method), 24

A
analyze() (psifr.measures.TransitionMeasure method),

25
analyze_subject() (psifr.measures.TransitionMeasure

method), 25

C
category_crp() (in module psifr.fr), 20
count_category() (in module psifr.transitions), 27
count_distance() (in module psifr.transitions), 27
count_lags() (in module psifr.transitions), 26
count_outputs() (in module psifr.outputs), 30

D
distance_crp() (in module psifr.fr), 21
distance_rank() (in module psifr.fr), 22

F
filter_data() (in module psifr.fr), 18

I
item_query (psifr.measures.TransitionMeasure at-

tribute), 24

K
keys (psifr.measures.TransitionMeasure attribute), 24

L
lag_crp() (in module psifr.fr), 20
lag_rank() (in module psifr.fr), 22

M
merge_free_recall() (in module psifr.fr), 17
merge_lists() (in module psifr.fr), 17

O
outputs_masker() (in module psifr.outputs), 31

P
percentile_rank() (in module psifr.transitions), 28
plot_distance_crp() (in module psifr.fr), 23
plot_lag_crp() (in module psifr.fr), 23
plot_raster() (in module psifr.fr), 23
plot_spc() (in module psifr.fr), 23
plot_swarm_error() (in module psifr.fr), 24
pnr() (in module psifr.fr), 19

R
rank_distance() (in module psifr.transitions), 28
rank_lags() (in module psifr.transitions), 28
reset_list() (in module psifr.fr), 18

S
spc() (in module psifr.fr), 19
split_lists() (in module psifr.fr), 18
split_lists() (psifr.measures.TransitionMeasure

method), 25

T
test (psifr.measures.TransitionMeasure attribute), 24
TransitionMeasure (class in psifr.measures), 24
transitions_masker() (in module psifr.transitions),

29

35


	Installation
	User guide
	Importing data
	Trial information
	Example
	Additional information

	Scoring data
	Scoring list recall
	Filtering and sorting

	Recall performance
	Raster plot
	Serial position curve
	Probability of Nth recall

	Recall order
	Lag-CRP
	Lag rank
	Category CRP

	Comparing conditions
	Working with custom columns
	Analysis by condition
	Plotting by condition
	Plotting by subject


	Tutorials
	API reference
	Free recall analysis
	Managing data
	psifr.fr.merge_free_recall
	psifr.fr.merge_lists
	psifr.fr.filter_data
	psifr.fr.reset_list
	psifr.fr.split_lists

	Recall probability
	psifr.fr.spc
	psifr.fr.pnr

	Transition probability
	psifr.fr.lag_crp
	psifr.fr.category_crp
	psifr.fr.distance_crp

	Transition rank
	psifr.fr.lag_rank
	psifr.fr.distance_rank

	Plotting
	psifr.fr.plot_raster
	psifr.fr.plot_spc
	psifr.fr.plot_lag_crp
	psifr.fr.plot_distance_crp
	psifr.fr.plot_swarm_error


	Measures
	Transition measure base class
	psifr.measures.TransitionMeasure
	psifr.measures.TransitionMeasure.split_lists
	psifr.measures.TransitionMeasure.analyze
	psifr.measures.TransitionMeasure.analyze_subject

	Transition measures

	Transitions
	Counting transitions
	psifr.transitions.count_lags
	psifr.transitions.count_category
	psifr.transitions.count_distance

	Ranking transitions
	psifr.transitions.percentile_rank
	psifr.transitions.rank_lags
	psifr.transitions.rank_distance

	Iterating over transitions
	psifr.transitions.transitions_masker


	Outputs
	Counting recalls by serial position and output position
	psifr.outputs.count_outputs

	Iterating over output positions
	psifr.outputs.outputs_masker



	Development
	Transitions
	Actual and possible transitions
	The transitions masker


	Index

