

Psifr documentation

In free recall, participants study a list of items and then name all of the
items they can remember in any order they choose. Many sophisticated analyses
have been developed to analyze data from free recall experiments, but these
analyses are often complicated and difficult to implement.

Psifr leverages the Pandas data analysis package to make precise and flexible
analysis of free recall data faster and easier.

	Installation

	User guide
	Importing data

	Scoring data

	Recall performance

	Recall order

	Comparing conditions

	Tutorials

	API reference
	Free recall analysis

	Transitions

	Development
	Transitions

Installation

You can install the latest stable version of Psifr using pip:

pip install psifr

You can also install the development version directly from the code
repository on GitHub:

pip install git+git://github.com/mortonne/psifr

User guide

	Importing data
	Trial information

	Example

	Additional information

	Scoring data
	Scoring list recall

	Filtering and sorting

	Recall performance
	Raster plot

	Serial position curve

	Probability of Nth recall

	Recall order
	Lag-CRP

	Lag rank

	Category CRP

	Comparing conditions
	Working with custom columns

	Analysis by condition

	Plotting by condition

	Plotting by subject

Importing data

In Psifr, free recall data are imported in the form of a “long” format
table. Each row corresponds to one study or recall event. Study
events include any time an item was presented to the participant.
Recall events correspond to any recall attempt; this includes repeats
of items there were already recalled and intrusions of items that
were not present in the study list.

This type of information is well represented in a CSV spreadsheet,
though any file format supported by pandas may be used for input. To
import from a CSV, use pandas. For example:

import pandas as pd
data = pd.read_csv("my_data.csv")

Trial information

The basic information that must be included for each event is the
following:

	subject
	Some code (numeric or string) indicating individual participants.
Must be unique for a given experiment. For example, sub-101.

	list
	Numeric code indicating individual lists. Must be unique within
subject.

	trial_type
	String indicating whether each event is a study event or a
recall event.

	position
	Integer indicating position within a given phase of the list. For
study events, this corresponds to input position (also
referred to as serial position). For recall events, this
corresponds to output position.

	item
	Individual thing being recalled, such as a word. May be specified
with text (e.g., pumpkin, Jack Nicholson) or a numeric code
(682, 121). Either way, the text or number must be unique
to that item. Text is easier to read and does not require any
additional information for interpretation and is therefore
preferred if available.

Example

Sample data

	subject

	list

	trial_type

	position

	item

	1

	1

	study

	1

	absence

	1

	1

	study

	2

	hollow

	1

	1

	study

	3

	pupil

	1

	1

	recall

	1

	pupil

	1

	1

	recall

	2

	absence

Additional information

Additional fields may be included in the data to indicate other
aspects of the experiment, such as presentation time, stimulus
category, experimental session, distraction length, etc. All of
these fields can then be used for analysis in Psifr.

Scoring data

After importing free recall data, we have a DataFrame with
a row for each study event and a row for each recall event. Next, we need to
score the data by matching study events with recall events.

Scoring list recall

First, let’s create a simple sample dataset with two lists:

In [1]: import pandas as pd

In [2]: data = pd.DataFrame({
 ...: 'subject': [
 ...: 1, 1, 1, 1, 1, 1,
 ...: 1, 1, 1, 1, 1, 1,
 ...:],
 ...: 'list': [
 ...: 1, 1, 1, 1, 1, 1,
 ...: 2, 2, 2, 2, 2, 2,
 ...:],
 ...: 'trial_type': [
 ...: 'study', 'study', 'study', 'recall', 'recall', 'recall',
 ...: 'study', 'study', 'study', 'recall', 'recall', 'recall',
 ...:],
 ...: 'position': [
 ...: 1, 2, 3, 1, 2, 3,
 ...: 1, 2, 3, 1, 2, 3,
 ...:],
 ...: 'item': [
 ...: 'absence', 'hollow', 'pupil', 'pupil', 'absence', 'empty',
 ...: 'fountain', 'piano', 'pillow', 'pillow', 'fountain', 'pillow',
 ...:],
 ...: })
 ...:

In [3]: data
Out[3]:
 subject list trial_type position item
0 1 1 study 1 absence
1 1 1 study 2 hollow
2 1 1 study 3 pupil
3 1 1 recall 1 pupil
4 1 1 recall 2 absence
5 1 1 recall 3 empty
6 1 2 study 1 fountain
7 1 2 study 2 piano
8 1 2 study 3 pillow
9 1 2 recall 1 pillow
10 1 2 recall 2 fountain
11 1 2 recall 3 pillow

Next, we’ll merge together the study and recall events by matching up
corresponding events:

In [4]: from psifr import fr

In [5]: merged = fr.merge_free_recall(data)

In [6]: merged
Out[6]:
 subject list item input output study recall repeat intrusion
0 1 1 absence 1.0 2.0 True True 0 False
1 1 1 hollow 2.0 NaN True False 0 False
2 1 1 pupil 3.0 1.0 True True 0 False
3 1 1 empty NaN 3.0 False True 0 True
4 1 2 fountain 1.0 2.0 True True 0 False
5 1 2 piano 2.0 NaN True False 0 False
6 1 2 pillow 3.0 1.0 True True 0 False
7 1 2 pillow 3.0 3.0 False True 1 False

For each item, there is one row for each unique combination of input and
output position. For example, if an item is presented once in the list, but
is recalled multiple times, there is one row for each of the recall attempts.
Repeated recalls are indicated by the repeat column, which is greater than
zero for recalls of an item after the first. Unique study events are indicated
by the study column; this excludes intrusions and repeated recalls.

Items that were not recalled have the recall column set to False. Because
they were not recalled, they have no defined output position, so output is
set to NaN. Finally, intrusions have an output position but no input position
because they did not appear in the list. There is an intrusion field for
convenience to label these recall attempts.

merge_free_recall() can also handle additional attributes beyond
the standard ones, such as codes indicating stimulus category or list condition.
See Working with custom columns for details.

Filtering and sorting

Now that we have a merged DataFrame, we can use pandas methods to quickly
get different views of the data. For some analyses, we may want to organize in
terms of the study list by removing repeats and intrusions. Because our data
are in a DataFrame, we can use the DataFrame.query method:

In [7]: merged.query('study')
Out[7]:
 subject list item input output study recall repeat intrusion
0 1 1 absence 1.0 2.0 True True 0 False
1 1 1 hollow 2.0 NaN True False 0 False
2 1 1 pupil 3.0 1.0 True True 0 False
4 1 2 fountain 1.0 2.0 True True 0 False
5 1 2 piano 2.0 NaN True False 0 False
6 1 2 pillow 3.0 1.0 True True 0 False

Alternatively, we may also want to get just the recall events, sorted by
output position instead of input position:

In [8]: merged.query('recall').sort_values(['list', 'output'])
Out[8]:
 subject list item input output study recall repeat intrusion
2 1 1 pupil 3.0 1.0 True True 0 False
0 1 1 absence 1.0 2.0 True True 0 False
3 1 1 empty NaN 3.0 False True 0 True
6 1 2 pillow 3.0 1.0 True True 0 False
4 1 2 fountain 1.0 2.0 True True 0 False
7 1 2 pillow 3.0 3.0 False True 1 False

Note that we first sort by list, then output position, to keep the
lists together.

Recall performance

First, load some sample data and create a merged DataFrame:

In [1]: from psifr import fr

In [2]: df = fr.sample_data('Morton2013')

In [3]: data = fr.merge_free_recall(df)

Raster plot

Raster plots can give you a quick overview of a whole dataset. We’ll look at
all of the first subject’s recalls. This will plot every individual recall,
colored by the serial position of the recalled item in the list. Items near
the end of the list are shown in yellow, and items near the beginning of the
list are shown in purple. Intrusions of items not on the list are shown in red.

In [4]: subj = fr.filter_data(data, 1)

In [5]: g = fr.plot_raster(subj).add_legend()

[image: ../_images/raster_subject.svg]

Serial position curve

We can calculate average recall for each serial position
using spc() and plot using plot_spc().

In [6]: recall = fr.spc(data)

In [7]: g = fr.plot_spc(recall)

[image: ../_images/spc.svg]Using the same plotting function, we can plot the curve for each
individual subject:

In [8]: g = fr.plot_spc(recall, col='subject', col_wrap=5)

[image: ../_images/spc_indiv.svg]

Probability of Nth recall

We can also split up recalls, to test for example how likely participants
were to initiate recall with the last item on the list.

In [9]: prob = fr.pnr(data)

In [10]: prob
Out[10]:
 prob actual possible
subject output input
1 1 1 0.000000 0 48
 2 0.020833 1 48
 3 0.000000 0 48
 4 0.000000 0 48
 5 0.000000 0 48
...
47 24 20 NaN 0 0
 21 NaN 0 0
 22 NaN 0 0
 23 NaN 0 0
 24 NaN 0 0

[23040 rows x 3 columns]

This gives us the probability of recall by output position ('output')
and serial or input position ('input'). This is a lot to look at all
at once, so it may be useful to plot just the first three output positions.
We can plot the curves using plot_spc(), which takes an
optional hue input to specify a variable to use to split the data
into curves of different colors.

In [11]: pfr = prob.query('output <= 3')

In [12]: g = fr.plot_spc(pfr, hue='output').add_legend()

[image: ../_images/pnr.svg]This plot shows what items tend to be recalled early in the recall sequence.

Recall order

A key advantage of free recall is that it provides information not only about
what items are recalled, but also the order in which they are recalled. A
number of analyses have been developed to charactize different influences on
recall order, such as the temporal order in which the items were presented at
study, the category of the items themselves, or the semantic similarity between
pairs of items.

Each conditional response probability (CRP) analysis involves calculating the
probability of some type of transition event. For the lag-CRP analysis,
transition events of interest are the different lags between serial positions
of items recalled adjacent to one another. Similar analyses focus not on
the serial position in which items are presented, but the properties of the
items themselves. A semantic-CRP analysis calculates the probability of
transitions between items in different semantic relatedness bins. A special
case of this analysis is when item pairs are placed into one of two bins,
depending on whether they are in the same stimulus category or not. In Psifr,
this is referred to as a category-CRP analysis.

Lag-CRP

In all CRP analyses, transition probabilities are calculated conditional
on a given transition being available. For example, in a six-item list,
if the items 6, 1, and 4 have been recalled, then possible items that could
have been recalled next are 2, 3, or 5; therefore, possible lags at
that point in the recall sequence are -2, -1, or +1. The number of actual
transitions observed for each lag is divided by the number of times that
lag was possible, to obtain the CRP for each lag.

First, load some sample data and create a merged DataFrame:

In [1]: from psifr import fr

In [2]: df = fr.sample_data('Morton2013')

In [3]: data = fr.merge_free_recall(df, study_keys=['category'])

Next, call lag_crp() to calculate conditional response
probability as a function of lag.

In [4]: crp = fr.lag_crp(data)

In [5]: crp
Out[5]:
 prob actual possible
subject lag
1 -23.0 0.020833 1 48
 -22.0 0.035714 3 84
 -21.0 0.026316 3 114
 -20.0 0.024000 3 125
 -19.0 0.014388 2 139
...
47 19.0 0.061224 3 49
 20.0 0.055556 2 36
 21.0 0.045455 1 22
 22.0 0.071429 1 14
 23.0 0.000000 0 6

[1880 rows x 3 columns]

The results show the count of times a given transition actually happened
in the observed recall sequences (actual) and the number of times a
transition could have occurred (possible). Finally, the prob column
gives the estimated probability of a given transition occurring, calculated
by dividing the actual count by the possible count.

Use plot_lag_crp() to display the results:

In [6]: g = fr.plot_lag_crp(crp)

[image: ../_images/lag_crp.svg]The peaks at small lags (e.g., +1 and -1) indicate that the recall sequences
show evidence of a temporal contiguity effect; that is, items presented near
to one another in the list are more likely to be recalled successively than
items that are distant from one another in the list.

Lag rank

We can summarize the tendency to group together nearby items using a lag
rank analysis. For each recall, this determines the absolute lag of all
remaining items available for recall and then calculates their percentile
rank. Then the rank of the actual transition made is taken, scaled to vary
between 0 (furthest item chosen) and 1 (nearest item chosen). Chance
clustering will be 0.5; clustering above that value is evidence of a
temporal contiguity effect.

In [7]: ranks = fr.lag_rank(data)

In [8]: ranks
Out[8]:
 rank
subject
1 0.610953
2 0.635676
3 0.612607
4 0.667090
5 0.643923
... ...
43 0.554024
44 0.561005
45 0.598151
46 0.652748
47 0.621245

[40 rows x 1 columns]

In [9]: ranks.agg(['mean', 'sem'])
Out[9]:
 rank
mean 0.624699
sem 0.006732

Category CRP

If there are multiple categories or conditions of trials in a list, we
can test whether participants tend to successively recall items from the
same category. The category-CRP estimates the probability of successively
recalling two items from the same category.

In [10]: cat_crp = fr.category_crp(data, category_key='category')

In [11]: cat_crp
Out[11]:
 prob actual possible
subject
1 0.801147 419 523
2 0.733456 399 544
3 0.763158 377 494
4 0.814882 449 551
5 0.877273 579 660
...
43 0.809187 458 566
44 0.744376 364 489
45 0.763780 388 508
46 0.763573 436 571
47 0.806907 514 637

[40 rows x 3 columns]

In [12]: cat_crp[['prob']].agg(['mean', 'sem'])
Out[12]:
 prob
mean 0.782693
sem 0.006262

The expected probability due to chance depends on the number of
categories in the list. In this case, there are three categories, so
a category CRP of 0.33 would be predicted if recalls were sampled
randomly from the list.

Comparing conditions

When analyzing a dataset, it’s often important to compare different
experimental conditions. Psifr is built on the Pandas DataFrame, which
has powerful ways of splitting data and applying operations to it.
This makes it possible to analyze and plot different conditions using
very little code.

Working with custom columns

First, load some sample data and create a merged DataFrame:

In [1]: from psifr import fr

In [2]: df = fr.sample_data('Morton2013')

In [3]: data = fr.merge_free_recall(
 ...: df, study_keys=['category'], list_keys=['list_type']
 ...:)
 ...:

In [4]: data.head()
Out[4]:
 subject list item input ... repeat intrusion list_type category
0 1 1 TOWEL 1.0 ... 0 False pure obj
1 1 1 LADLE 2.0 ... 0 False pure obj
2 1 1 THERMOS 3.0 ... 0 False pure obj
3 1 1 LEGO 4.0 ... 0 False pure obj
4 1 1 BACKPACK 5.0 ... 0 False pure obj

[5 rows x 11 columns]

The merge_free_recall() function only includes columns from the
raw data if they are one of the standard columns or if they’ve explictly been
included using study_keys, recall_keys, or list_keys.
list_keys apply to all events in a list, while study_keys and
recall_keys are relevant only for study and recall events, respectively.

We’ve included a list key here, to indicate that the list_type
field should be included for all study and recall events in each list, even
intrusions. The category field will be included for all study events
and all valid recalls. Intrusions will have an undefined category.

Analysis by condition

Now we can run any analysis separately for the different conditions. We’ll
use the serial position curve analysis as an example.

In [5]: spc = data.groupby('list_type').apply(fr.spc)

In [6]: spc.head()
Out[6]:
 recall
list_type subject input
mixed 1 1.0 0.500000
 2.0 0.466667
 3.0 0.600000
 4.0 0.300000
 5.0 0.333333

The spc DataFrame has separate groups with the results for each
list_type.

Warning

When using groupby with order-based analyses like
lag_crp(), make sure all recalls in all recall
sequences for a given list have the same label. Otherwise, you will
be breaking up recall sequences, which could result in an invalid
analysis.

Plotting by condition

We can then plot a separate curve for each condition. All plotting functions
take optional hue, col, col_wrap, and row
inputs that can be used to divide up data when plotting. See the
Seaborn documentation [https://seaborn.pydata.org/generated/seaborn.relplot.html]
for details. Most inputs to seaborn.relplot() are supported.

For example, we can plot two curves for the different list types:

In [7]: g = fr.plot_spc(spc, hue='list_type').add_legend()

[image: ../_images/spc_list_type.svg]We can also plot the curves in different axes using the col option:

In [8]: g = fr.plot_spc(spc, col='list_type')

[image: ../_images/spc_list_type_col.svg]We can also plot all combinations of two conditions:

In [9]: spc_split = data.groupby(['list_type', 'category']).apply(fr.spc)

In [10]: g = fr.plot_spc(spc_split, col='list_type', row='category')

[image: ../_images/spc_split.svg]

Plotting by subject

All analyses can be plotted separately by subject. A nice way to do this is
using the col and col_wrap optional inputs, to make a grid
of plots with 6 columns per row:

In [11]: g = fr.plot_spc(
 : spc, hue='list_type', col='subject', col_wrap=6, height=2
 :).add_legend()
 :

[image: ../_images/spc_subject.svg]

Tutorials

See the psifr-notebooks [https://github.com/mortonne/psifr-notebooks] project for a set of Jupyter notebooks with
sample code. These examples go more in depth into the options available
for each analysis and how they can be used for advanced analyses such as
conditionalizing CRP analysis on specific transitions.

API reference

	Free recall analysis
	Managing data

	Recall probability

	Transition probability

	Transition rank

	Plotting

	Transitions
	Counting transitions

	Ranking transitions

	Iterating over recalls

	Transition measure base class

	Transition measures

Free recall analysis

Managing data

	merge_free_recall(data, **kwargs)

	Merge standard free recall events.

	merge_lists(study, recall[, merge_keys, ...])

	Merge study and recall events together for each list.

	filter_data(data[, subjects, lists, ...])

	Filter data to get a subset of trials.

	reset_list(df)

	Reset list index in a DataFrame.

	split_lists(frame, phase, keys[, names, ...])

	Convert free recall data from one phase to split format.

Recall probability

	spc(df)

	Serial position curve.

	pnr(df[, item_query, test_key, test])

	Probability of recall by serial position and output position.

Transition probability

	lag_crp(df[, item_query, test_key, test])

	Lag-CRP for multiple subjects.

	category_crp(df, category_key[, item_query, ...])

	Conditional response probability of within-category transitions.

	distance_crp(df, index_key, distances, edges)

	Conditional response probability by distance bin.

Transition rank

	lag_rank(df[, item_query, test_key, test])

	Calculate rank of the absolute lags in free recall lists.

	distance_rank(df, index_key, distances[, ...])

	Calculate rank of transition distances in free recall lists.

Plotting

	plot_raster(df[, hue, palette, marker, ...])

	Plot recalls in a raster plot.

	plot_spc(recall, **facet_kws)

	Plot a serial position curve.

	plot_lag_crp(recall[, max_lag])

	Plot conditional response probability by lag.

	plot_distance_crp(crp[, min_samples])

	Plot response probability by distance bin.

	plot_swarm_error(data[, x, y, swarm_color, ...])

	Plot points as a swarm plus mean with error bars.

psifr.fr.merge_free_recall

	
psifr.fr.merge_free_recall(data, **kwargs)

	Merge standard free recall events.

Split study and recall events and then merge them.
See merge_lists for details.

psifr.fr.merge_lists

	
psifr.fr.merge_lists(study, recall, merge_keys=None, list_keys=None, study_keys=None, recall_keys=None, position_key='position')

	Merge study and recall events together for each list.

	Parameters

	
	study (pandas.DataFrame) – Information about all study events. Should have one row for
each study event.

	recall (pandas.DataFrame) – Information about all recall events. Should have one row for
each recall attempt.

	merge_keys (list, optional) – Columns to use to designate events to merge. Default is
[‘subject’, ‘list’, ‘item’], which will merge events related to
the same item, but only within list.

	list_keys (list, optional) – Columns that apply to both study and recall events.

	study_keys (list, optional) – Columns that only apply to study events.

	recall_keys (list, optional) – Columns that only apply to recall events.

	position_key (str, optional) – Column indicating the position of each item in either the study
list or the recall sequence.

	Returns

	merged – Merged information about study and recall events. Each row
corresponds to one unique input/output pair.

The following columns will be added:

	inputint
	Position of each item in the input list (i.e., serial
position).

	outputint
	Position of each item in the recall sequence.

	studybool
	True for rows corresponding to a unique study event.

	recallbool
	True for rows corresponding to a unique recall event.

	repeatint
	Number of times this recall event has been repeated (0 for
the first recall of an item).

	intrusionbool
	True for recalls that do not correspond to any study event.

	Return type

	pandas.DataFrame

psifr.fr.filter_data

	
psifr.fr.filter_data(data, subjects=None, lists=None, trial_type=None, positions=None, inputs=None, outputs=None)

	Filter data to get a subset of trials.

psifr.fr.reset_list

	
psifr.fr.reset_list(df)

	Reset list index in a DataFrame.

psifr.fr.split_lists

	
psifr.fr.split_lists(frame, phase, keys, names=None, item_query=None, as_list=False)

	Convert free recall data from one phase to split format.

psifr.fr.spc

	
psifr.fr.spc(df)

	Serial position curve.

	Parameters

	df (pandas.DataFrame) – Merged study and recall data. See merge_lists.

	Returns

	recall – Index includes:

	subjecthashable
	Subject identifier.

	inputint
	Serial position in the list.

Values are:

	recallfloat
	Recall probability for each serial position.

	Return type

	pandas.Series

psifr.fr.pnr

	
psifr.fr.pnr(df, item_query=None, test_key=None, test=None)

	Probability of recall by serial position and output position.

Calculate probability of Nth recall, where N is each output
position. Invalid recalls (repeats and intrusions) are ignored and
not counted toward output position.

	Parameters

	
	df (pandas.DataFrame) – Merged study and recall data. See merge_lists. List length is
assumed to be the same for all lists within each subject.
Must have fields: subject, list, input, output, study, recall.
Input position must be defined such that the first serial
position is 1, not 0.

	item_query (str, optional) – Query string to select items to include in the pool of possible
recalls to be examined. See pandas.DataFrame.query for
allowed format.

	test_key (str, optional) – Name of column with labels to use when testing transitions for
inclusion.

	test (callable, optional) – Callable that takes in previous and current item values and
returns True for transitions that should be included.

	Returns

	prob – Analysis results. Has fields: subject, output, input, prob,
actual, possible. The prob column for output x and input y
indicates the probability of recalling input position y at
output position x. The actual and possible columns give the
raw tallies for how many times an event actually occurred and
how many times it was possible given the recall sequence.

	Return type

	pandas.DataFrame

psifr.fr.lag_crp

	
psifr.fr.lag_crp(df, item_query=None, test_key=None, test=None)

	Lag-CRP for multiple subjects.

	Parameters

	
	df (pandas.DataFrame) – Merged study and recall data. See merge_lists. List length is
assumed to be the same for all lists within each subject.
Must have fields: subject, list, input, output, recalled.
Input position must be defined such that the first serial
position is 1, not 0.

	item_query (str, optional) – Query string to select items to include in the pool of possible
recalls to be examined. See pandas.DataFrame.query for
allowed format.

	test_key (str, optional) – Name of column with labels to use when testing transitions for
inclusion.

	test (callable, optional) – Callable that takes in previous and current item values and
returns True for transitions that should be included.

	Returns

	results – Has fields:

	subjecthashable
	Results are separated by each subject.

	lagint
	Lag of input position between two adjacent recalls.

	probfloat
	Probability of each lag transition.

	actualint
	Total of actual made transitions at each lag.

	possibleint
	Total of times each lag was possible, given the prior
input position and the remaining items to be recalled.

	Return type

	pandas.DataFrame

psifr.fr.category_crp

	
psifr.fr.category_crp(df, category_key, item_query=None, test_key=None, test=None)

	Conditional response probability of within-category transitions.

	Parameters

	
	df (pandas.DataFrame) – Merged study and recall data. See merge_lists. List length is
assumed to be the same for all lists within each subject.
Must have fields: subject, list, input, output, recalled.

	category_key (str) – Name of column with category labels.

	item_query (str, optional) – Query string to select items to include in the pool of possible
recalls to be examined. See pandas.DataFrame.query for
allowed format.

	test_key (str, optional) – Name of column with labels to use when testing transitions for
inclusion.

	test (callable, optional) – Callable that takes in previous and current item values and
returns True for transitions that should be included.

	Returns

	results – Has fields:

	subjecthashable
	Results are separated by each subject.

	probfloat
	Probability of each lag transition.

	actualint
	Total of actual made transitions at each lag.

	possibleint
	Total of times each lag was possible, given the prior
input position and the remaining items to be recalled.

	Return type

	pandas.DataFrame

psifr.fr.distance_crp

	
psifr.fr.distance_crp(df, index_key, distances, edges, centers=None, count_unique=False, item_query=None, test_key=None, test=None)

	Conditional response probability by distance bin.

	Parameters

	
	df (pandas.DataFrame) – Merged free recall data.

	index_key (str) – Name of column containing the index of each item in the
distances matrix.

	distances (numpy.array) – Items x items matrix of pairwise distances or similarities.

	edges (array-like) – Edges of bins to apply to the distances.

	centers (array-like, optional) – Centers to label each bin with. If not specified, the center
point between edges will be used.

	count_unique (bool, optional) –
	If true, possible transitions to a given distance bin will only
	count once for a given transition.

	item_query (str, optional) – Query string to select items to include in the pool of possible
recalls to be examined. See pandas.DataFrame.query for
allowed format.

	test_key (str, optional) – Name of column with labels to use when testing transitions for
inclusion.

	test (callable, optional) – Callable that takes in previous and current item values and
returns True for transitions that should be included.

	Returns

	crp – Has fields:

	subjecthashable
	Results are separated by each subject.

	binint
	Distance bin.

	probfloat
	Probability of each distance bin.

	actualint
	Total of actual transitions for each distance bin.

	possibleint
	Total of times each distance bin was possible, given the
prior input position and the remaining items to be
recalled.

	Return type

	pandas.DataFrame

psifr.fr.lag_rank

	
psifr.fr.lag_rank(df, item_query=None, test_key=None, test=None)

	Calculate rank of the absolute lags in free recall lists.

	Parameters

	
	df (pandas.DataFrame) – Merged study and recall data. See merge_lists. List length is
assumed to be the same for all lists within each subject.
Must have fields: subject, list, input, output, recalled.
Input position must be defined such that the first serial
position is 1, not 0.

	item_query (str, optional) – Query string to select items to include in the pool of possible
recalls to be examined. See pandas.DataFrame.query for
allowed format.

	test_key (str, optional) – Name of column with labels to use when testing transitions for
inclusion.

	test (callable, optional) – Callable that takes in previous and current item values and
returns True for transitions that should be included.

	Returns

	stat – Has fields ‘subject’ and ‘rank’.

	Return type

	pandas.DataFrame

psifr.fr.distance_rank

	
psifr.fr.distance_rank(df, index_key, distances, item_query=None, test_key=None, test=None)

	Calculate rank of transition distances in free recall lists.

	Parameters

	
	df (pandas.DataFrame) – Merged study and recall data. See merge_lists. List length is
assumed to be the same for all lists within each subject.
Must have fields: subject, list, input, output, recalled.
Input position must be defined such that the first serial
position is 1, not 0.

	index_key (str) – Name of column containing the index of each item in the
distances matrix.

	distances (numpy.array) – Items x items matrix of pairwise distances or similarities.

	item_query (str, optional) – Query string to select items to include in the pool of possible
recalls to be examined. See pandas.DataFrame.query for
allowed format.

	test_key (str, optional) – Name of column with labels to use when testing transitions for
inclusion.

	test (callable, optional) – Callable that takes in previous and current item values and
returns True for transitions that should be included.

	Returns

	stat – Has fields ‘subject’ and ‘rank’.

	Return type

	pandas.DataFrame

psifr.fr.plot_raster

	
psifr.fr.plot_raster(df, hue='input', palette=None, marker='s', intrusion_color=None, orientation='horizontal', length=6, aspect=None, legend='auto', **facet_kws)

	Plot recalls in a raster plot.

psifr.fr.plot_spc

	
psifr.fr.plot_spc(recall, **facet_kws)

	Plot a serial position curve.

Additional arguments are passed to seaborn.relplot.

	Parameters

	recall (pandas.DataFrame) – Results from calling spc.

psifr.fr.plot_lag_crp

	
psifr.fr.plot_lag_crp(recall, max_lag=5, **facet_kws)

	Plot conditional response probability by lag.

Additional arguments are passed to seaborn.FacetGrid.

	Parameters

	
	recall (pandas.DataFrame) – Results from calling lag_crp.

	max_lag (int) – Maximum absolute lag to plot.

psifr.fr.plot_distance_crp

	
psifr.fr.plot_distance_crp(crp, min_samples=None, **facet_kws)

	Plot response probability by distance bin.

	Parameters

	
	crp (pandas.DataFrame) – Results from fr.distance_crp.

	min_samples (int) – Minimum number of samples a bin must have per subject to
include in the plot.

	**facet_kws – Additional inputs to pass to seaborn.relplot.

psifr.fr.plot_swarm_error

	
psifr.fr.plot_swarm_error(data, x=None, y=None, swarm_color=None, swarm_size=5, point_color='k', **facet_kws)

	Plot points as a swarm plus mean with error bars.

Transitions

Counting transitions

	count_lags(list_length, pool_items, recall_items)

	Count actual and possible serial position lags.

	count_category(pool_items, recall_items, ...)

	Count within-category transitions.

	count_distance(distances, edges, pool_items, ...)

	Count transitions within distance bins.

Ranking transitions

	percentile_rank(actual, possible)

	Get percentile rank of a score compared to possible scores.

	rank_lags(pool_items, recall_items[, ...])

	Calculate rank of absolute lag for free recall lists.

	rank_distance(distances, pool_items, ...[, ...])

	Calculate percentile rank of transition distances.

Iterating over recalls

	outputs_masker(pool_items, recall_items, ...)

	Iterate over valid outputs.

	transitions_masker(pool_items, recall_items, ...)

	Iterate over transitions with masking.

Transition measure base class

	TransitionMeasure(items_key, label_key[, ...])

	

	TransitionMeasure.split_lists(data, phase)

	Get relevant fields and split by list.

	TransitionMeasure.analyze(data)

	

	TransitionMeasure.analyze_subject(subject, ...)

	

Transition measures

	TransitionOutputs(list_length[, item_query, ...])

	

	TransitionLag(list_length[, item_query, ...])

	

	TransitionLagRank([item_query, test_key, test])

	

	TransitionCategory(category_key[, ...])

	

	TransitionDistance(index_key, distances, edges)

	

	TransitionDistanceRank(index_key, distances)

	

psifr.transitions.count_lags

	
psifr.transitions.count_lags(list_length, pool_items, recall_items, pool_label=None, recall_label=None, pool_test=None, recall_test=None, test=None)

	Count actual and possible serial position lags.

	Parameters

	
	list_length (int) – Number of items in each list.

	pool_items (list) – List of the serial positions available for recall in each list.
Must match the serial position codes used in recall_items.

	recall_items (list) – List indicating the serial position of each recall in output
order (NaN for intrusions).

	pool_label (list, optional) – List of the positions to use for calculating lag. Default is to
use pool_items.

	recall_label (list, optional) – List of position labels in recall order. Default is to use
recall_items.

	pool_test (list, optional) – List of some test value for each item in the pool.

	recall_test (list, optional) – List of some test value for each recall attempt by output
position.

	test (callable) – Callable that evaluates each transition between items n and
n+1. Must take test values for items n and n+1 and return True
if a given transition should be included.

psifr.transitions.count_category

	
psifr.transitions.count_category(pool_items, recall_items, pool_category, recall_category, pool_test=None, recall_test=None, test=None)

	Count within-category transitions.

psifr.transitions.count_distance

	
psifr.transitions.count_distance(distances, edges, pool_items, recall_items, pool_index, recall_index, pool_test=None, recall_test=None, test=None, count_unique=False)

	Count transitions within distance bins.

	Parameters

	
	distances (numpy.array) – Items x items matrix of pairwise distances or similarities.

	edges (array-like) – Edges of bins to apply to distances.

	pool_items (list of list) – Unique item codes for each item in the pool available for recall.

	recall_items (list of list) – Unique item codes of recalled items.

	pool_index (list of list) – Index of each item in the distances matrix.

	recall_index (list of list) – Index of each recalled item.

	pool_test (list of list, optional) – Test value for each item in the pool.

	recall_test (list of list, optional) – Test value for each recalled item.

	test (callable) – Called as test(prev, curr) or test(prev, poss) to screen
actual and possible transitions, respectively.

	count_unique (bool, optional) – If true, only unique values will be counted toward the possible
transitions. If multiple items are avilable for recall for a
given transition and a given bin, that bin will only be
incremented once. If false, all possible transitions will add
to the count.

	Returns

	
	actual (pandas.Series) – Count of actual transitions made for each bin.

	possible (pandas.Series) – Count of possible transitions for each bin.

psifr.transitions.percentile_rank

	
psifr.transitions.percentile_rank(actual, possible)

	Get percentile rank of a score compared to possible scores.

psifr.transitions.rank_lags

	
psifr.transitions.rank_lags(pool_items, recall_items, pool_label=None, recall_label=None, pool_test=None, recall_test=None, test=None)

	Calculate rank of absolute lag for free recall lists.

	Parameters

	
	pool_items (list) – List of the serial positions available for recall in each list.
Must match the serial position codes used in recall_items.

	recall_items (list) – List indicating the serial position of each recall in output
order (NaN for intrusions).

	pool_label (list, optional) – List of the positions to use for calculating lag. Default is to
use pool_items.

	recall_label (list, optional) – List of position labels in recall order. Default is to use
recall_items.

	pool_test (list, optional) – List of some test value for each item in the pool.

	recall_test (list, optional) – List of some test value for each recall attempt by output
position.

	test (callable) – Callable that evaluates each transition between items n and
n+1. Must take test values for items n and n+1 and return True
if a given transition should be included.

	Returns

	rank – Absolute lag percentile rank for each included transition. The
rank is 0 if the lag was the most distant of the available
transitions, and 1 if the lag was the closest. Ties are
assigned to the average percentile rank.

	Return type

	list

psifr.transitions.rank_distance

	
psifr.transitions.rank_distance(distances, pool_items, recall_items, pool_index, recall_index, pool_test=None, recall_test=None, test=None)

	Calculate percentile rank of transition distances.

	Parameters

	
	distances (numpy.array) – Items x items matrix of pairwise distances or similarities.

	pool_items (list of list) – Unique item codes for each item in the pool available for recall.

	recall_items (list of list) – Unique item codes of recalled items.

	pool_index (list of list) – Index of each item in the distances matrix.

	recall_index (list of list) – Index of each recalled item.

	pool_test (list of list, optional) – Test value for each item in the pool.

	recall_test (list of list, optional) – Test value for each recalled item.

	test (callable) – Called as test(prev, curr) or test(prev, poss) to screen
actual and possible transitions, respectively.

	Returns

	rank – Distance percentile rank for each included transition. The
rank is 0 if the distance was the largest of the available
transitions, and 1 if the distance was the smallest. Ties are
assigned to the average percentile rank.

	Return type

	list

psifr.transitions.outputs_masker

	
psifr.transitions.outputs_masker(pool_items, recall_items, pool_output, recall_output, pool_test=None, recall_test=None, test=None)

	Iterate over valid outputs.

	Parameters

	
	pool_items (list) – Items available for recall. Order does not matter. May contain
repeated values. Item identifiers must be unique within pool.

	recall_items (list) – Recalled items in output position order.

	pool_output (list) – Output values for pool items. Must be the same order as pool.

	recall_output (list) – Output values in output position order.

	pool_test (list, optional) – Test values for items available for recall. Must be the same
order as pool.

	recall_test (list, optional) – Test values for items in output position order.

	test (callable, optional) – Used to test whether output recalls and possible recalls should
be included, based on their test values.

	Yields

	
	curr (object) – Output value for the item at this valid output position.

	poss (numpy.array) – Output values for all possible items that could be recalled at
this output position.

	output (int) – Current output position.

psifr.transitions.transitions_masker

	
psifr.transitions.transitions_masker(pool_items, recall_items, pool_output, recall_output, pool_test=None, recall_test=None, test=None)

	Iterate over transitions with masking.

Transitions are between a “previous” item and a “current” item.
Non-included transitions will be skipped. A transition is yielded
only if it matches the following conditions:

(1) Each item involved in the transition is in the pool. Items are
removed from the pool after they appear as the previous item.

(2) Optionally, an additional check is run based on test values
associated with the items in the transition. For example, this
could be used to only include transitions where the category of
the previous and current items is the same.

The masker will yield “output” values, which may be distinct from
the item identifiers used to determine item repeats.

	Parameters

	
	pool_items (list) – Items available for recall. Order does not matter. May contain
repeated values. Item identifiers must be unique within pool.

	recall_items (list) – Recalled items in output position order.

	pool_output (list) – Output values for pool items. Must be the same order as pool.

	recall_output (list) – Output values in output position order.

	pool_test (list, optional) – Test values for items available for recall. Must be the same
order as pool.

	recall_test (list, optional) – Test values for items in output position order.

	test (callable, optional) – Used to test whether individual transitions should be included,
based on test values.

test(prev, curr) - test for included transition

test(prev, poss) - test for included possible transition

	Yields

	
	prev (object) – Output value for the “from” item on this transition.

	curr (object) – Output value for the “to” item.

	poss (numpy.array) – Output values for all possible valid “to” items.

psifr.transitions.TransitionMeasure

	
class psifr.transitions.TransitionMeasure(items_key, label_key, item_query=None, test_key=None, test=None)

	
	
__init__(items_key, label_key, item_query=None, test_key=None, test=None)

	

Methods

	__init__(items_key, label_key[, item_query, ...])

	

	analyze(data)

	

	analyze_subject(subject, pool_lists, ...)

	

	split_lists(data, phase)

	Get relevant fields and split by list.

psifr.transitions.TransitionMeasure.split_lists

	
TransitionMeasure.split_lists(data, phase)

	Get relevant fields and split by list.

psifr.transitions.TransitionMeasure.analyze

	
TransitionMeasure.analyze(data)

	

psifr.transitions.TransitionMeasure.analyze_subject

	
abstract TransitionMeasure.analyze_subject(subject, pool_lists, recall_lists)

	

Development

	Transitions
	Actual and possible transitions

	The transitions masker

Transitions

Psifr has a core set of tools for analyzing transitions in free recall data.
These tools focus on measuring what transitions actually occurred, and which
transitions were possible given the order in which participants recalled items.

Actual and possible transitions

Calculating a conditional response probability involves two parts: the frequency
at which a given event actually occurred in the data and frequency at which a
given event could have occurred. The frequency of possible events is
calculated conditional on the recalls that have been made leading up to each
transition. For example, a transition between item \(i\) and item \(j\)
is not considered “possible” in a CRP analysis if item \(i\) was never
recalled. The transition is also not considered “possible” if, when item
\(i\) is recalled, item \(j\) has already been recalled previously.

Repeated recall events are typically excluded from the counts of both actual
and possible transition events. That is, the transition event frequencies are
conditional on the transition not being either to or from a repeated item.

Calculating a CRP measure involves tallying how many transitions of a given
type were made during a free recall test. For example, one common measure is
the serial position lag between items. For a list of length \(N\), possible
lags are in the range \([-N+1, N-1]\). Because repeats are excluded, a lag
of zero is never possible. The count of actual and possible transitions for
each lag is calculated first, and then the CRP for each lag is calculated as
the actual count divided by the possible count.

The transitions masker

The psifr.transitions.transitions_masker() is a generator that makes
it simple to iterate over transitions while “masking” out events such as
intrusions of items not on the list and repeats of items that have already
been recalled.

On each step of the iterator, the previous, current, and possible items are
yielded. The previous
item is the item being transitioned from. The current item is the item being
transitioned to. The possible items includes an array of all items that
were valid to be recalled next, given the recall sequence up to that point (not
including the current item).

In [1]: from psifr.transitions import transitions_masker

In [2]: pool = [1, 2, 3, 4, 5, 6]

In [3]: recs = [6, 2, 3, 6, 1, 4]

In [4]: masker = transitions_masker(pool_items=pool, recall_items=recs,
 ...: pool_output=pool, recall_output=recs)
 ...:

In [5]: for prev, curr, poss in masker:
 ...: print(prev, curr, poss)
 ...:
6 2 [1 2 3 4 5]
2 3 [1 3 4 5]
1 4 [4 5]

Only valid transitions are yielded, so the code
for a specific analysis only needs to calculate the transition measure of
interest and count the number of actual and possible transitions in each bin
of interest.

Four inputs are required:

	pool_items
	List of identifiers for all items available for recall. Identifiers
can be anything that is unique to each item in the list (e.g., serial
position, a string representation of the item, an index in the stimulus
pool).

	recall_items
	List of identifiers for the sequence of recalls, in order. Valid recalls
must match an item in pool_items. Other items are considered intrusions.

	pool_output
	Output codes for each item in the pool. This should be whatever you need to
calculate your transition measure.

	recall_output
	Output codes for each recall in the sequence of recalls.

By using different values for these four inputs and defining different
transition measures, a wide range of analyses can be implemented.

Index

 _
 | A
 | C
 | D
 | F
 | L
 | M
 | O
 | P
 | R
 | S
 | T

_

 	
 	__init__() (psifr.transitions.TransitionMeasure method)

A

 	
 	analyze() (psifr.transitions.TransitionMeasure method)

 	
 	analyze_subject() (psifr.transitions.TransitionMeasure method)

C

 	
 	category_crp() (in module psifr.fr)

 	count_category() (in module psifr.transitions)

 	
 	count_distance() (in module psifr.transitions)

 	count_lags() (in module psifr.transitions)

D

 	
 	distance_crp() (in module psifr.fr)

 	
 	distance_rank() (in module psifr.fr)

F

 	
 	filter_data() (in module psifr.fr)

L

 	
 	lag_crp() (in module psifr.fr)

 	
 	lag_rank() (in module psifr.fr)

M

 	
 	merge_free_recall() (in module psifr.fr)

 	
 	merge_lists() (in module psifr.fr)

O

 	
 	outputs_masker() (in module psifr.transitions)

P

 	
 	percentile_rank() (in module psifr.transitions)

 	plot_distance_crp() (in module psifr.fr)

 	plot_lag_crp() (in module psifr.fr)

 	
 	plot_raster() (in module psifr.fr)

 	plot_spc() (in module psifr.fr)

 	plot_swarm_error() (in module psifr.fr)

 	pnr() (in module psifr.fr)

R

 	
 	rank_distance() (in module psifr.transitions)

 	
 	rank_lags() (in module psifr.transitions)

 	reset_list() (in module psifr.fr)

S

 	
 	spc() (in module psifr.fr)

 	
 	split_lists() (in module psifr.fr)

 	(psifr.transitions.TransitionMeasure method)

T

 	
 	TransitionMeasure (class in psifr.transitions)

 	
 	transitions_masker() (in module psifr.transitions)

 _static/file.png

_static/plus.png

_static/logo.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Psifr documentation

 		
 Installation

 		
 User guide

 		
 Importing data

 		
 Trial information

 		
 Example

 		
 Additional information

 		
 Scoring data

 		
 Scoring list recall

 		
 Filtering and sorting

 		
 Recall performance

 		
 Raster plot

 		
 Serial position curve

 		
 Probability of Nth recall

 		
 Recall order

 		
 Lag-CRP

 		
 Lag rank

 		
 Category CRP

 		
 Comparing conditions

 		
 Working with custom columns

 		
 Analysis by condition

 		
 Plotting by condition

 		
 Plotting by subject

 		
 Tutorials

 		
 API reference

 		
 Free recall analysis

 		
 Managing data

 		
 Recall probability

 		
 Transition probability

 		
 Transition rank

 		
 Plotting

 		
 Transitions

 		
 Counting transitions

 		
 Ranking transitions

 		
 Iterating over recalls

 		
 Transition measure base class

 		
 Transition measures

 		
 Development

 		
 Transitions

 		
 Actual and possible transitions

 		
 The transitions masker

