
Psifr
Release v0.3.0

Neal Morton

Feb 22, 2022

CONTENTS

1 Installation 3

2 User guide 5
2.1 Importing data . 5
2.2 Scoring data . 6
2.3 Conditional response probability . 8

3 Tutorials 11

4 API Reference 13
4.1 Transitions . 13
4.2 Free Recall Analysis . 19

Python Module Index 37

Index 39

i

ii

Psifr, Release v0.3.0

In free recall, participants study a list of items and then name all of the items they can remember in any order they
choose. Many sophisticated analyses have been developed to analyze data from free recall experiments, but these
analyses are often complicated and difficult to implement.

Psifr leverages the Pandas data analysis package to make precise and flexible analysis of free recall data faster and
easier.

CONTENTS 1

Psifr, Release v0.3.0

2 CONTENTS

CHAPTER

ONE

INSTALLATION

First get a copy of the code from GitHub:

git clone git@github.com:mortonne/psifr.git

Then install:

cd psifr
python setup.py install

3

Psifr, Release v0.3.0

4 Chapter 1. Installation

CHAPTER

TWO

USER GUIDE

2.1 Importing data

In Psifr, free recall data are imported in the form of a “long” format table. Each row corresponds to one study or recall
event. Study events include any time an item was presented to the participant. Recall events correspond to any recall
attempt; this includes repeats of items there were already recalled and intrusions of items that were not present in the
study list.

This type of information is well represented in a CSV spreadsheet, though any file format supported by pandas may
be used for input. To import from a CSV, use pandas. For example:

import pandas as pd
data = pd.read_csv("my_data.csv")

2.1.1 Trial information

The basic information that must be included for each event is the following:

subject Some code (numeric or string) indicating individual participants. Must be unique for a given experiment. For
example, sub-101.

list Numeric code indicating individual lists. Must be unique within subject.

trial_type String indicating whether each event is a study event or a recall event.

position Integer indicating position within a given phase of the list. For study events, this corresponds to input
position (also referred to as serial position). For recall events, this corresponds to output position.

item Individual thing being recalled, such as a word. May be specified with text (e.g., pumpkin, Jack
Nicholson) or a numeric code (682, 121). Either way, the text or number must be unique to that item.
Text is easier to read and does not require any additional information for interpretation and is therefore preferred
if available.

5

Psifr, Release v0.3.0

2.1.2 Example

Table 1: Sample data
subject list trial_type position item
1 1 study 1 absence
1 1 study 2 hollow
1 1 study 3 pupil
1 1 recall 1 pupil
1 1 recall 2 absence

2.1.3 Additional information

Additional fields may be included in the data to indicate other aspects of the experiment, such as presentation time,
stimulus category, experimental session, distraction length, etc. All of these fields can then be used for analysis in
Psifr.

2.2 Scoring data

After importing free recall data, we have a DataFrame with a row for each study event and a row for each recall event.
Next, we need to score the data by matching study events with recall events.

2.2.1 Scoring list recall

First, let’s create a simple sample dataset with two lists:

In [1]: import pandas as pd

In [2]: data = pd.DataFrame(
...: {'subject': [1, 1, 1, 1, 1, 1,
...: 1, 1, 1, 1, 1, 1],
...: 'list': [1, 1, 1, 1, 1, 1,
...: 2, 2, 2, 2, 2, 2],
...: 'trial_type': ['study', 'study', 'study',
...: 'recall', 'recall', 'recall',
...: 'study', 'study', 'study',
...: 'recall', 'recall', 'recall'],
...: 'position': [1, 2, 3, 1, 2, 3,
...: 1, 2, 3, 1, 2, 3],
...: 'item': ['absence', 'hollow', 'pupil',
...: 'pupil', 'absence', 'empty',
...: 'fountain', 'piano', 'pillow',
...: 'pillow', 'fountain', 'pillow']})
...:

In [3]: data
Out[3]:

subject list trial_type position item
0 1 1 study 1 absence
1 1 1 study 2 hollow
2 1 1 study 3 pupil
3 1 1 recall 1 pupil

(continues on next page)

6 Chapter 2. User guide

Psifr, Release v0.3.0

(continued from previous page)

4 1 1 recall 2 absence
5 1 1 recall 3 empty
6 1 2 study 1 fountain
7 1 2 study 2 piano
8 1 2 study 3 pillow
9 1 2 recall 1 pillow
10 1 2 recall 2 fountain
11 1 2 recall 3 pillow

Next, we’ll merge together the study and recall events by matching up corresponding events:

In [4]: from psifr import fr

In [5]: study = data.query('trial_type == "study"').copy()

In [6]: recall = data.query('trial_type == "recall"').copy()

In [7]: merged = fr.merge_lists(study, recall)

In [8]: merged
Out[8]:

subject list item input output study recall repeat intrusion
0 1 1 absence 1.0 2.0 True True 0 False
1 1 1 hollow 2.0 NaN True False 0 False
2 1 1 pupil 3.0 1.0 True True 0 False
3 1 1 empty NaN 3.0 False True 0 True
4 1 2 fountain 1.0 2.0 True True 0 False
5 1 2 piano 2.0 NaN True False 0 False
6 1 2 pillow 3.0 1.0 True True 0 False
7 1 2 pillow 3.0 3.0 False True 1 False

For each item, there is one row for each unique combination of input and output position. For example, if an item is
presented once in the list, but is recalled multiple times, there is one row for each of the recall attempts. Repeated
recalls are indicated by the repeat column, which is greater than zero for recalls of an item after the first. Unique study
events are indicated by the study column; this excludes intrusions and repeated recalls.

Items that were not recalled have the recall column set to False. Because they were not recalled, they have no defined
output position, so output is set to NaN. Finally, intrusions have an output position but no input position because they
did not appear in the list. There is an intrusion field for convenience to label these recall attempts.

merge_lists() can also handle additional attributes beyond the standard ones, such as codes indicating stimulus
category or list condition. See the merge_lists() documentation for details.

2.2.2 Filtering and sorting

Now that we have a merged DataFrame, we can use pandas methods to quickly get different views of the data. For
some analyses, we may want to organize in terms of the study list by removing repeats and intrusions. Because our
data are in a DataFrame, we can use the DataFrame.query method:

In [9]: merged.query('study')
Out[9]:

subject list item input output study recall repeat intrusion
0 1 1 absence 1.0 2.0 True True 0 False
1 1 1 hollow 2.0 NaN True False 0 False
2 1 1 pupil 3.0 1.0 True True 0 False

(continues on next page)

2.2. Scoring data 7

Psifr, Release v0.3.0

(continued from previous page)

4 1 2 fountain 1.0 2.0 True True 0 False
5 1 2 piano 2.0 NaN True False 0 False
6 1 2 pillow 3.0 1.0 True True 0 False

Alternatively, we may also want to get just the recall events, sorted by output position instead of input position:

In [10]: merged.query('recall').sort_values(['list', 'output'])
Out[10]:

subject list item input output study recall repeat intrusion
2 1 1 pupil 3.0 1.0 True True 0 False
0 1 1 absence 1.0 2.0 True True 0 False
3 1 1 empty NaN 3.0 False True 0 True
6 1 2 pillow 3.0 1.0 True True 0 False
4 1 2 fountain 1.0 2.0 True True 0 False
7 1 2 pillow 3.0 3.0 False True 1 False

Note that we first sort by list, then output position, to keep the lists together.

2.3 Conditional response probability

A key advantage of free recall is that it provides information not only about what items are recalled, but also the order
in which they are recalled. A number of analyses have been developed to charactize different influences on recall
order, such as the temporal order in which the items were presented at study, the category of the items themselves, or
the semantic similarity between pairs of items.

Each conditional response probability (CRP) analysis involves calculating the probability of some type of transition
event. For the lag-CRP analysis, transition events of interest are the different lags between serial positions of items
recalled adjacent to one another. Similar analyses focus not on the serial position in which items are presented, but the
properties of the items themselves. A semantic-CRP analysis calculates the probability of transitions between items in
different semantic relatedness bins. A special case of this analysis is when item pairs are placed into one of two bins,
depending on whether they are in the same stimulus category or not. In Psifr, this is referred to as a category-CRP
analysis.

2.3.1 Actual and possible transitions

Calculating a conditional response probability involves two parts: the frequency at which a given event actually
occurred in the data and frequency at which a given event could have occurred. The frequency of possible events
is calculated conditional on the recalls that have been made leading up to each transition. For example, a transition
between item 𝑖 and item 𝑗 is not considered “possible” in a CRP analysis if item 𝑖 was never recalled. The transition
is also not considered “possible” if, when item 𝑖 is recalled, item 𝑗 has already been recalled previously.

Repeated recall events are typically excluded from the counts of both actual and possible transition events. That is, the
transition event frequencies are conditional on the transition not being either to or from a repeated item.

Calculating a CRP measure involves tallying how many transitions of a given type were made during a free recall test.
For example, one common measure is the serial position lag between items. For a list of length 𝑁 , possible lags are
in the range [−𝑁 + 1, 𝑁 − 1]. Because repeats are excluded, a lag of zero is never possible. The count of actual
and possible transitions for each lag is calculated first, and then the CRP for each lag is calculated as the actual count
divided by the possible count.

8 Chapter 2. User guide

Psifr, Release v0.3.0

2.3.2 The transitions masker

The psifr.transitions.transitions_masker() is a generator that makes it simple to iterate over transi-
tions while “masking” out events such as intrusions of items not on the list and repeats of items that have already been
recalled.

On each step of the iterator, the previous, current, and possible items are yielded. The previous item is the item being
transitioned from. The current item is the item being transitioned to. The possible items includes an array of all items
that were valid to be recalled next, given the recall sequence up to that point (not including the current item).

In [1]: from psifr.transitions import transitions_masker

In [2]: pool = [1, 2, 3, 4, 5, 6]

In [3]: recs = [6, 2, 3, 6, 1, 4]

In [4]: masker = transitions_masker(pool_items=pool, recall_items=recs,
...: pool_output=pool, recall_output=recs)
...:

In [5]: for prev, curr, poss in masker:
...: print(prev, curr, poss)
...:

6 2 [1 2 3 4 5]
2 3 [1 3 4 5]
1 4 [4 5]

Only valid transitions are yielded, so the code for a specific analysis only needs to calculate the transition measure of
interest and count the number of actual and possible transitions in each bin of interest.

Four inputs are required:

pool_items List of identifiers for all items available for recall. Identifiers can be anything that is unique to each item
in the list (e.g., serial position, a string representation of the item, an index in the stimulus pool).

recall_items List of identifiers for the sequence of recalls, in order. Valid recalls must match an item in pool_items.
Other items are considered intrusions.

pool_output Output codes for each item in the pool. This should be whatever you need to calculate your transition
measure.

recall_output Output codes for each recall in the sequence of recalls.

By using different values for these four inputs and defining different transition measures, a wide range of analyses can
be implemented.

2.3. Conditional response probability 9

Psifr, Release v0.3.0

10 Chapter 2. User guide

CHAPTER

THREE

TUTORIALS

See the psifr-notebooks project for sample code.

11

https://github.com/mortonne/psifr-notebooks

Psifr, Release v0.3.0

12 Chapter 3. Tutorials

CHAPTER

FOUR

API REFERENCE

4.1 Transitions

The transitions module contains utilties to iterate over and mask transitions between recalled items. The psifr.
transitions.transitions_masker() does most of the work here.

Module to analyze transitions during free recall.

psifr.transitions.count_category(pool_items, recall_items, pool_category, recall_category,
pool_test=None, recall_test=None, test=None)

Count within-category transitions.

Parameters

• pool_items (list) – List of the serial positions available for recall in each list. Must
match the serial position codes used in recall_items.

• recall_items (list) – List indicating the serial position of each recall in output order
(NaN for intrusions).

• pool_category (list) – List of the category of each item in the pool for each list.

• recall_category (list) – List of item category in recall order.

• pool_test (list, optional) – List of some test value for each item in the pool.

• recall_test (list, optional) – List of some test value for each recall attempt by
output position.

• test (callable) – Callable that evaluates each transition between items n and n+1. Must
take test values for items n and n+1 and return True if a given transition should be included.

Returns

• actual (int) – Count of actual within-category transitions.

• possible (int) – Count of possible within-category transitions.

13

Psifr, Release v0.3.0

Examples

>>> from psifr import transitions
>>> pool_items = [[1, 2, 3, 4]]
>>> recall_items = [[4, 3, 1, 2]]
>>> pool_category = [[1, 1, 2, 2]]
>>> recall_category = [[2, 2, 1, 1]]
>>> transitions.count_category(
... pool_items, recall_items, pool_category, recall_category
...)
(2, 2)

psifr.transitions.count_distance(distances, edges, pool_items, recall_items, pool_index, re-
call_index, pool_test=None, recall_test=None, test=None,
count_unique=False)

Count transitions within distance bins.

Parameters

• distances (numpy.array) – Items x items matrix of pairwise distances or similarities.

• edges (array-like) – Edges of bins to apply to distances.

• pool_items (list of list) – Unique item codes for each item in the pool available
for recall.

• recall_items (list of list) – Unique item codes of recalled items.

• pool_index (list of list) – Index of each item in the distances matrix.

• recall_index (list of list) – Index of each recalled item.

• pool_test (list of list, optional) – Test value for each item in the pool.

• recall_test (list of list, optional) – Test value for each recalled item.

• test (callable) – Called as test(prev, curr) or test(prev, poss) to screen actual and pos-
sible transitions, respectively.

• count_unique (bool, optional) – If true, only unique values will be counted to-
ward the possible transitions. If multiple items are avilable for recall for a given transition
and a given bin, that bin will only be incremented once. If false, all possible transitions will
add to the count.

Returns

• actual (pandas.Series) – Count of actual transitions made for each bin.

• possible (pandas.Series) – Count of possible transitions for each bin.

See also:

rank_distance() Calculate percentile rank of transition distances.

14 Chapter 4. API Reference

Psifr, Release v0.3.0

Examples

>>> from psifr import transitions
>>> distances = np.array([[0, 1, 2, 2], [1, 0, 2, 2], [2, 2, 0, 3], [2, 2, 3, 0]])
>>> edges = np.array([0.5, 1.5, 2.5, 3.5])
>>> pool_items = [[1, 2, 3, 4]]
>>> recall_items = [[4, 2, 3, 1]]
>>> pool_index = [[0, 1, 2, 3]]
>>> recall_index = [[3, 1, 2, 0]]
>>> actual, possible = transitions.count_distance(
... distances, edges, pool_items, recall_items, pool_index, recall_index
...)
>>> actual
(0.5, 1.5] 0
(1.5, 2.5] 3
(2.5, 3.5] 0
dtype: int64
>>> possible
(0.5, 1.5] 1
(1.5, 2.5] 4
(2.5, 3.5] 1
dtype: int64

psifr.transitions.count_lags(list_length, pool_items, recall_items, pool_label=None, re-
call_label=None, pool_test=None, recall_test=None, test=None,
count_unique=False)

Count actual and possible serial position lags.

Parameters

• list_length (int) – Number of items in each list.

• pool_items (list) – List of the serial positions available for recall in each list. Must
match the serial position codes used in recall_items.

• recall_items (list) – List indicating the serial position of each recall in output order
(NaN for intrusions).

• pool_label (list, optional) – List of the positions to use for calculating lag. De-
fault is to use pool_items.

• recall_label (list, optional) – List of position labels in recall order. Default is
to use recall_items.

• pool_test (list, optional) – List of some test value for each item in the pool.

• recall_test (list, optional) – List of some test value for each recall attempt by
output position.

• test (callable) – Callable that evaluates each transition between items n and n+1. Must
take test values for items n and n+1 and return True if a given transition should be included.

• count_unique (bool, optional) – If true, only unique values will be counted to-
ward the possible transitions. If multiple items are avilable for recall for a given transition
and a given bin, that bin will only be incremented once. If false, all possible transitions will
add to the count.

Returns

• actual (pandas.Series) – Count of actual lags that occurred in the recall sequence.

• possible (pandas.Series) – Count of possible lags.

4.1. Transitions 15

Psifr, Release v0.3.0

See also:

rank_lags() Rank of serial position lags.

Examples

>>> from psifr import transitions
>>> pool_items = [[1, 2, 3, 4]]
>>> recall_items = [[4, 2, 3, 1]]
>>> actual, possible = transitions.count_lags(4, pool_items, recall_items)
>>> actual
-3 0
-2 2
-1 0
0 0
1 1
2 0
3 0

dtype: int64
>>> possible
-3 1
-2 2
-1 2
0 0
1 1
2 0
3 0

dtype: int64

psifr.transitions.count_pairs(n_item, pool_items, recall_items, pool_test=None, re-
call_test=None, test=None)

Count transitions between pairs of specific items.

psifr.transitions.percentile_rank(actual, possible)
Get percentile rank of a score compared to possible scores.

Parameters

• actual (float) – Score to be ranked. Generally a distance score.

• possible (numpy.ndarray or list) – Possible scores to be compared to.

Returns rank – Rank scaled to range from 0 (low score) to 1 (high score).

Return type float

Examples

>>> from psifr import transitions
>>> actual = 3
>>> possible = [1, 2, 2, 2, 3]
>>> transitions.percentile_rank(actual, possible)
1.0

psifr.transitions.rank_distance(distances, pool_items, recall_items, pool_index, recall_index,
pool_test=None, recall_test=None, test=None)

Calculate percentile rank of transition distances.

16 Chapter 4. API Reference

Psifr, Release v0.3.0

Parameters

• distances (numpy.array) – Items x items matrix of pairwise distances or similarities.

• pool_items (list of list) – Unique item codes for each item in the pool available
for recall.

• recall_items (list of list) – Unique item codes of recalled items.

• pool_index (list of list) – Index of each item in the distances matrix.

• recall_index (list of list) – Index of each recalled item.

• pool_test (list of list, optional) – Test value for each item in the pool.

• recall_test (list of list, optional) – Test value for each recalled item.

• test (callable) – Called as test(prev, curr) or test(prev, poss) to screen actual and pos-
sible transitions, respectively.

Returns rank – Distance percentile rank for each included transition. The rank is 0 if the distance
was the largest of the available transitions, and 1 if the distance was the smallest. Ties are
assigned to the average percentile rank.

Return type list

See also:

count_distance() Count transitions within distance bins.

Examples

>>> from psifr import transitions
>>> distances = np.array([[0, 1, 2, 2], [1, 0, 2, 2], [2, 2, 0, 3], [2, 2, 3, 0]])
>>> edges = np.array([0.5, 1.5, 2.5, 3.5])
>>> pool_items = [[1, 2, 3, 4]]
>>> recall_items = [[4, 2, 3, 1]]
>>> pool_index = [[0, 1, 2, 3]]
>>> recall_index = [[3, 1, 2, 0]]
>>> transitions.rank_distance(
... distances, pool_items, recall_items, pool_index, recall_index
...)
[0.75, 0.0, nan]

psifr.transitions.rank_lags(pool_items, recall_items, pool_label=None, recall_label=None,
pool_test=None, recall_test=None, test=None)

Calculate rank of absolute lag for free recall lists.

Parameters

• pool_items (list) – List of the serial positions available for recall in each list. Must
match the serial position codes used in recall_items.

• recall_items (list) – List indicating the serial position of each recall in output order
(NaN for intrusions).

• pool_label (list, optional) – List of the positions to use for calculating lag. De-
fault is to use pool_items.

• recall_label (list, optional) – List of position labels in recall order. Default is
to use recall_items.

• pool_test (list, optional) – List of some test value for each item in the pool.

4.1. Transitions 17

Psifr, Release v0.3.0

• recall_test (list, optional) – List of some test value for each recall attempt by
output position.

• test (callable) – Callable that evaluates each transition between items n and n+1. Must
take test values for items n and n+1 and return True if a given transition should be included.

Returns rank – Absolute lag percentile rank for each included transition. The rank is 0 if the lag
was the most distant of the available transitions, and 1 if the lag was the closest. Ties are assigned
to the average percentile rank.

Return type list

See also:

count_lags() Count actual and possible serial position lags.

Examples

>>> from psifr import transitions
>>> pool_items = [[1, 2, 3, 4]]
>>> recall_items = [[4, 2, 3, 1]]
>>> transitions.rank_lags(pool_items, recall_items)
[0.5, 0.5, nan]

psifr.transitions.transitions_masker(pool_items, recall_items, pool_output, recall_output,
pool_test=None, recall_test=None, test=None)

Iterate over transitions with masking.

Transitions are between a “previous” item and a “current” item. Non-included transitions will be skipped. A
transition is yielded only if it matches the following conditions:

(1) Each item involved in the transition is in the pool. Items are removed from the pool after they appear as the
previous item.

(2) Optionally, an additional check is run based on test values associated with the items in the transition. For
example, this could be used to only include transitions where the category of the previous and current items is
the same.

The masker will yield “output” values, which may be distinct from the item identifiers used to determine item
repeats.

Parameters

• pool_items (list) – Items available for recall. Order does not matter. May contain
repeated values. Item identifiers must be unique within pool.

• recall_items (list) – Recalled items in output position order.

• pool_output (list) – Output values for pool items. Must be the same order as pool.

• recall_output (list) – Output values in output position order.

• pool_test (list, optional) – Test values for items available for recall. Must be
the same order as pool.

• recall_test (list, optional) – Test values for items in output position order.

• test (callable, optional) – Used to test whether individual transitions should be
included, based on test values.

test(prev, curr) - test for included transition

test(prev, poss) - test for included possible transition

18 Chapter 4. API Reference

Psifr, Release v0.3.0

Yields

• prev (object) – Output value for the “from” item on this transition.

• curr (object) – Output value for the “to” item.

• poss (numpy.array) – Output values for all possible valid “to” items.

Examples

>>> pool = [1, 2, 3, 4, 5, 6]
>>> recs = [6, 2, 3, 6, 1, 4]
>>> masker = transitions_masker(
... pool_items=pool, recall_items=recs, pool_output=pool, recall_output=recs
...)
>>> for prev, curr, poss in masker:
... print(prev, curr, poss)
6 2 [1 2 3 4 5]
2 3 [1 3 4 5]
1 4 [4 5]

4.2 Free Recall Analysis

Utilities for working with free recall data.

psifr.fr.block_index(list_labels)
Get index of each block in a list.

Parameters list_labels (list or numpy.ndarray) – Position labels that define the
blocks.

Returns block – Block index of each position.

Return type numpy.ndarray

Examples

>>> import numpy as np
>>> from psifr import fr
>>> list_labels = [2, 2, 3, 3, 3, 1, 1]
>>> fr.block_index(list_labels)
array([1, 1, 2, 2, 2, 3, 3])

psifr.fr.category_crp(df, category_key, item_query=None, test_key=None, test=None)
Conditional response probability of within-category transitions.

Parameters

• df (pandas.DataFrame) – Merged study and recall data. See merge_lists. List length
is assumed to be the same for all lists within each subject. Must have fields: subject, list,
input, output, recalled.

• category_key (str) – Name of column with category labels.

• item_query (str, optional) – Query string to select items to include in the pool of
possible recalls to be examined. See pandas.DataFrame.query for allowed format.

4.2. Free Recall Analysis 19

Psifr, Release v0.3.0

• test_key (str, optional) – Name of column with labels to use when testing transi-
tions for inclusion.

• test (callable, optional) – Callable that takes in previous and current item values
and returns True for transitions that should be included.

Returns

results – Has fields:

subject [hashable] Results are separated by each subject.

prob [float] Probability of each lag transition.

actual [int] Total of actual made transitions at each lag.

possible [int] Total of times each lag was possible, given the prior input position and the re-
maining items to be recalled.

Return type pandas.DataFrame

Examples

>>> from psifr import fr
>>> raw = fr.sample_data('Morton2013')
>>> data = fr.merge_free_recall(raw, study_keys=['category'])
>>> cat_crp = fr.category_crp(data, 'category')
>>> cat_crp.head()

prob actual possible
subject
1 0.801147 419 523
2 0.733456 399 544
3 0.763158 377 494
4 0.814882 449 551
5 0.877273 579 660

psifr.fr.check_data(df)
Run checks on free recall data.

Parameters df (pandas.DataFrame) –

Contains one row for each trial (study and recall). Must have fields:

subject [number or str] Subject identifier.

list [number] List identifier. This applies to both study and recall trials.

trial_type [str] Type of trial; may be ‘study’ or ‘recall’.

position [number] Position within the study list or recall sequence.

item [str] Item that was either presented or recalled on this trial.

20 Chapter 4. API Reference

Psifr, Release v0.3.0

Examples

>>> from psifr import fr
>>> import pandas as pd
>>> raw = pd.DataFrame(
... {'subject': [1, 1], 'list': [1, 1], 'position': [1, 2], 'item': ['a', 'b
→˓']}
...)
>>> fr.check_data(raw)
Traceback (most recent call last):
File "psifr/fr.py", line 253, in check_data

assert col in df.columns, f'Required column {col} is missing.'
AssertionError: Required column trial_type is missing.

psifr.fr.distance_crp(df, index_key, distances, edges, centers=None, count_unique=False,
item_query=None, test_key=None, test=None)

Conditional response probability by distance bin.

Parameters

• df (pandas.DataFrame) – Merged free recall data.

• index_key (str) – Name of column containing the index of each item in the distances
matrix.

• distances (numpy.array) – Items x items matrix of pairwise distances or similarities.

• edges (array-like) – Edges of bins to apply to the distances.

• centers (array-like, optional) – Centers to label each bin with. If not specified,
the center point between edges will be used.

• count_unique (bool, optional) – If true, possible transitions to a given distance
bin will only count once for a given transition.

• item_query (str, optional) – Query string to select items to include in the pool of
possible recalls to be examined. See pandas.DataFrame.query for allowed format.

• test_key (str, optional) – Name of column with labels to use when testing transi-
tions for inclusion.

• test (callable, optional) – Callable that takes in previous and current item values
and returns True for transitions that should be included.

Returns

crp – Has fields:

subject [hashable] Results are separated by each subject.

bin [int] Distance bin.

prob [float] Probability of each distance bin.

actual [int] Total of actual transitions for each distance bin.

possible [int] Total of times each distance bin was possible, given the prior input position and
the remaining items to be recalled.

Return type pandas.DataFrame

See also:

pool_index() Given a list of presented items and an item pool, look up the pool index of each item.

4.2. Free Recall Analysis 21

Psifr, Release v0.3.0

distance_rank() Calculate rank of transition distances.

Examples

>>> from scipy.spatial.distance import squareform
>>> from psifr import fr
>>> raw = fr.sample_data('Morton2013')
>>> data = fr.merge_free_recall(raw)
>>> items, distances = fr.sample_distances('Morton2013')
>>> data['item_index'] = fr.pool_index(data['item'], items)
>>> edges = np.percentile(squareform(distances), np.linspace(1, 99, 10))
>>> fr.distance_crp(data, 'item_index', distances, edges)

bin prob actual possible
subject center
1 0.467532 (0.352, 0.583] 0.085456 151 1767

0.617748 (0.583, 0.653] 0.067916 87 1281
0.673656 (0.653, 0.695] 0.062500 65 1040
0.711075 (0.695, 0.727] 0.051836 48 926
0.742069 (0.727, 0.757] 0.050633 44 869

...
47 0.742069 (0.727, 0.757] 0.062822 61 971

0.770867 (0.757, 0.785] 0.030682 27 880
0.800404 (0.785, 0.816] 0.040749 37 908
0.834473 (0.816, 0.853] 0.046651 39 836
0.897275 (0.853, 0.941] 0.028868 25 866

[360 rows x 4 columns]

psifr.fr.distance_rank(df, index_key, distances, item_query=None, test_key=None, test=None)
Calculate rank of transition distances in free recall lists.

Parameters

• df (pandas.DataFrame) – Merged study and recall data. See merge_lists. List length
is assumed to be the same for all lists within each subject. Must have fields: subject, list,
input, output, recalled. Input position must be defined such that the first serial position is 1,
not 0.

• index_key (str) – Name of column containing the index of each item in the distances
matrix.

• distances (numpy.array) – Items x items matrix of pairwise distances or similarities.

• item_query (str, optional) – Query string to select items to include in the pool of
possible recalls to be examined. See pandas.DataFrame.query for allowed format.

• test_key (str, optional) – Name of column with labels to use when testing transi-
tions for inclusion.

• test (callable, optional) – Callable that takes in previous and current item values
and returns True for transitions that should be included.

Returns stat – Has fields ‘subject’ and ‘rank’.

Return type pandas.DataFrame

See also:

pool_index() Given a list of presented items and an item pool, look up the pool index of each item.

22 Chapter 4. API Reference

Psifr, Release v0.3.0

distance_crp() Conditional response probability by distance bin.

Examples

>>> from scipy.spatial.distance import squareform
>>> from psifr import fr
>>> raw = fr.sample_data('Morton2013')
>>> data = fr.merge_free_recall(raw)
>>> items, distances = fr.sample_distances('Morton2013')
>>> data['item_index'] = fr.pool_index(data['item'], items)
>>> dist_rank = fr.distance_rank(data, 'item_index', distances)
>>> dist_rank.head()

rank
subject
1 0.635571
2 0.571457
3 0.627282
4 0.637596
5 0.646181

psifr.fr.filter_data(data, subjects=None, lists=None, trial_type=None, positions=None, in-
puts=None, outputs=None)

Filter data to get a subset of trials.

Parameters

• data (pandas.DataFrame) – Raw or merged data to filter.

• subjects (hashable or list of hashable) – Subject or subjects to include.

• lists (hashable or list of hashable) – List or lists to include.

• trial_type ({'study', 'recall'}) – Trial type to include.

• positions (int or list of int) – Position or positions to include.

• inputs (int or list of int) – Input position or positions to include.

• outputs (int or list of int) – Output position or positions to include.

Returns filtered – The filtered subset of data.

Return type pandas.DataFrame

Examples

>>> from psifr import fr
>>> subjects_list = [1, 1, 2, 2]
>>> study_lists = [['a', 'b'], ['c', 'd'], ['e', 'f'], ['g', 'h']]
>>> recall_lists = [['b'], ['d', 'c'], ['f', 'e'], []]
>>> raw = fr.table_from_lists(subjects_list, study_lists, recall_lists)
>>> fr.filter_data(raw, subjects=1, trial_type='study')

subject list trial_type position item
0 1 1 study 1 a
1 1 1 study 2 b
3 1 2 study 1 c
4 1 2 study 2 d

4.2. Free Recall Analysis 23

Psifr, Release v0.3.0

>>> data = fr.merge_free_recall(raw)
>>> fr.filter_data(data, subjects=2)

subject list item input output study recall repeat intrusion prior_
→˓list prior_input
4 2 1 e 1 2.0 True True 0 False
→˓NaN NaN
5 2 1 f 2 1.0 True True 0 False
→˓NaN NaN
6 2 2 g 1 NaN True False 0 False
→˓NaN NaN
7 2 2 h 2 NaN True False 0 False
→˓NaN NaN

psifr.fr.lag_crp(df, lag_key='input', count_unique=False, item_query=None, test_key=None,
test=None)

Lag-CRP for multiple subjects.

Parameters

• df (pandas.DataFrame) – Merged study and recall data. See merge_lists. List length
is assumed to be the same for all lists. Must have fields: subject, list, input, output, recalled.
Input position must be defined such that the first serial position is 1, not 0.

• lag_key (str, optional) – Name of column to use when calculating lag between
recalled items. Default is to calculate lag based on input position.

• count_unique (bool, optional) – If true, possible transitions of the same lag will
only be incremented once per transition.

• item_query (str, optional) – Query string to select items to include in the pool of
possible recalls to be examined. See pandas.DataFrame.query for allowed format.

• test_key (str, optional) – Name of column with labels to use when testing transi-
tions for inclusion.

• test (callable, optional) – Callable that takes in previous and current item values
and returns True for transitions that should be included.

Returns

results – Has fields:

subject [hashable] Results are separated by each subject.

lag [int] Lag of input position between two adjacent recalls.

prob [float] Probability of each lag transition.

actual [int] Total of actual made transitions at each lag.

possible [int] Total of times each lag was possible, given the prior input position and the re-
maining items to be recalled.

Return type pandas.DataFrame

See also:

lag_rank() Rank of the absolute lags in recall sequences.

24 Chapter 4. API Reference

Psifr, Release v0.3.0

Examples

>>> from psifr import fr
>>> raw = fr.sample_data('Morton2013')
>>> data = fr.merge_free_recall(raw)
>>> fr.lag_crp(data)

prob actual possible
subject lag
1 -23.0 0.020833 1 48

-22.0 0.035714 3 84
-21.0 0.026316 3 114
-20.0 0.024000 3 125
-19.0 0.014388 2 139

...
47 19.0 0.061224 3 49

20.0 0.055556 2 36
21.0 0.045455 1 22
22.0 0.071429 1 14
23.0 0.000000 0 6

[1880 rows x 3 columns]

psifr.fr.lag_rank(df, item_query=None, test_key=None, test=None)
Calculate rank of the absolute lags in free recall lists.

Parameters

• df (pandas.DataFrame) – Merged study and recall data. See merge_lists. List length
is assumed to be the same for all lists within each subject. Must have fields: subject, list,
input, output, recalled. Input position must be defined such that the first serial position is 1,
not 0.

• item_query (str, optional) – Query string to select items to include in the pool of
possible recalls to be examined. See pandas.DataFrame.query for allowed format.

• test_key (str, optional) – Name of column with labels to use when testing transi-
tions for inclusion.

• test (callable, optional) – Callable that takes in previous and current item values
and returns True for transitions that should be included.

Returns stat – Has fields ‘subject’ and ‘rank’.

Return type pandas.DataFrame

See also:

lag_crp() Conditional response probability by input lag.

4.2. Free Recall Analysis 25

Psifr, Release v0.3.0

Examples

>>> from psifr import fr
>>> raw = fr.sample_data('Morton2013')
>>> data = fr.merge_free_recall(raw)
>>> lag_rank = fr.lag_rank(data)
>>> lag_rank.head()

rank
subject
1 0.610953
2 0.635676
3 0.612607
4 0.667090
5 0.643923

psifr.fr.merge_free_recall(data, **kwargs)
Score free recall data by matching up study and recall events.

Parameters

• data (pandas.DataFrame) – Free recall data in Psifr format. Must have subject, list,
trial_type, position, and item columns.

• merge_keys (list, optional) – Columns to use to designate events to merge. De-
fault is [‘subject’, ‘list’, ‘item’], which will merge events related to the same item, but only
within list.

• list_keys (list, optional) – Columns that apply to both study and recall events.

• study_keys (list, optional) – Columns that only apply to study events.

• recall_keys (list, optional) – Columns that only apply to recall events.

• position_key (str, optional) – Column indicating the position of each item in
either the study list or the recall sequence.

Returns

merged – Merged information about study and recall events. Each row corresponds to one
unique input/output pair.

The following columns will be added:

input [int] Position of each item in the input list (i.e., serial position).

output [int] Position of each item in the recall sequence.

study [bool] True for rows corresponding to a unique study event.

recall [bool] True for rows corresponding to a unique recall event.

repeat [int] Number of times this recall event has been repeated (0 for the first recall of an
item).

intrusion [bool] True for recalls that do not correspond to any study event.

prior_list [int] For prior-list intrusions, the list the item was presented.

prior_position [int] For prior-list intrusions, the position the item was presented.

Return type pandas.DataFrame

See also:

26 Chapter 4. API Reference

Psifr, Release v0.3.0

merge_lists() Flexibly merge study events with recall events. Useful for recall phases that don’t match
the typical free recall setup, like final free recall of all lists.

Examples

>>> from psifr import fr
>>> study = [['absence', 'hollow'], ['fountain', 'piano']]
>>> recall = [['absence'], ['piano', 'hollow']]
>>> raw = fr.table_from_lists([1, 1], study, recall)
>>> raw

subject list trial_type position item
0 1 1 study 1 absence
1 1 1 study 2 hollow
2 1 1 recall 1 absence
3 1 2 study 1 fountain
4 1 2 study 2 piano
5 1 2 recall 1 piano
6 1 2 recall 2 hollow

Score the data to create a table with matched study and recall events.

>>> data = fr.merge_free_recall(raw)
>>> data

subject list item input output study recall repeat intrusion
→˓prior_list prior_input
0 1 1 absence 1.0 1.0 True True 0 False
→˓ NaN NaN
1 1 1 hollow 2.0 NaN True False 0 False
→˓ NaN NaN
2 1 2 fountain 1.0 NaN True False 0 False
→˓ NaN NaN
3 1 2 piano 2.0 1.0 True True 0 False
→˓ NaN NaN
4 1 2 hollow NaN 2.0 False True 0 True
→˓ 1.0 2.0

You can also include non-standard columns. Information that only applies to study events (here, the encoding
task used) can be indicated using the study_keys input.

>>> raw['task'] = np.array([1, 2, np.nan, 2, 1, np.nan, np.nan])
>>> fr.merge_free_recall(raw, study_keys=['task'])

subject list item input output study recall repeat intrusion task
→˓ prior_list prior_input
0 1 1 absence 1.0 1.0 True True 0 False 1.0
→˓ NaN NaN
1 1 1 hollow 2.0 NaN True False 0 False 2.0
→˓ NaN NaN
2 1 2 fountain 1.0 NaN True False 0 False 2.0
→˓ NaN NaN
3 1 2 piano 2.0 1.0 True True 0 False 1.0
→˓ NaN NaN
4 1 2 hollow NaN 2.0 False True 0 True NaN
→˓ 1.0 2.0

Information that only applies to recall onsets (here, the time in seconds after the start of the recall phase that a
recall attempt was made), can be indicated using the recall_keys input.

4.2. Free Recall Analysis 27

Psifr, Release v0.3.0

>>> raw['onset'] = np.array([np.nan, np.nan, 1.1, np.nan, np.nan, 1.4, 3.8])
>>> fr.merge_free_recall(raw, recall_keys=['onset'])

subject list item input output study recall repeat intrusion
→˓onset prior_list prior_input
0 1 1 absence 1.0 1.0 True True 0 False 1.
→˓1 NaN NaN
1 1 1 hollow 2.0 NaN True False 0 False
→˓NaN NaN NaN
2 1 2 fountain 1.0 NaN True False 0 False
→˓NaN NaN NaN
3 1 2 piano 2.0 1.0 True True 0 False 1.
→˓4 NaN NaN
4 1 2 hollow NaN 2.0 False True 0 True 3.
→˓8 1.0 2.0

Use list_keys to indicate columns that apply to both study and recall events. If list_keys do not match
for a pair of study and recall events, they will not be matched in the output.

>>> raw['condition'] = np.array([1, 1, 1, 2, 2, 2, 2])
>>> fr.merge_free_recall(raw, list_keys=['condition'])

subject list item input output study recall repeat intrusion
→˓condition prior_list prior_input
0 1 1 absence 1.0 1.0 True True 0 False
→˓ 1 NaN NaN
1 1 1 hollow 2.0 NaN True False 0 False
→˓ 1 NaN NaN
2 1 2 fountain 1.0 NaN True False 0 False
→˓ 2 NaN NaN
3 1 2 piano 2.0 1.0 True True 0 False
→˓ 2 NaN NaN
4 1 2 hollow NaN 2.0 False True 0 True
→˓ 2 1.0 2.0

psifr.fr.merge_lists(study, recall, merge_keys=None, list_keys=None, study_keys=None, re-
call_keys=None, position_key='position')

Merge study and recall events together for each list.

Parameters

• study (pandas.DataFrame) – Information about all study events. Should have one
row for each study event.

• recall (pandas.DataFrame) – Information about all recall events. Should have one
row for each recall attempt.

• merge_keys (list, optional) – Columns to use to designate events to merge. De-
fault is [‘subject’, ‘list’, ‘item’], which will merge events related to the same item, but only
within list.

• list_keys (list, optional) – Columns that apply to both study and recall events.

• study_keys (list, optional) – Columns that only apply to study events.

• recall_keys (list, optional) – Columns that only apply to recall events.

• position_key (str, optional) – Column indicating the position of each item in
either the study list or the recall sequence.

Returns

28 Chapter 4. API Reference

Psifr, Release v0.3.0

merged – Merged information about study and recall events. Each row corresponds to one
unique input/output pair.

The following columns will be added:

input [int] Position of each item in the input list (i.e., serial position).

output [int] Position of each item in the recall sequence.

study [bool] True for rows corresponding to a unique study event.

recall [bool] True for rows corresponding to a unique recall event.

repeat [int] Number of times this recall event has been repeated (0 for the first recall of an
item).

intrusion [bool] True for recalls that do not correspond to any study event.

Return type pandas.DataFrame

See also:

merge_free_recall() Score standard free recall data.

Examples

>>> import pandas as pd
>>> from psifr import fr
>>> study = pd.DataFrame(
... {'subject': [1, 1], 'list': [1, 1], 'position': [1, 2], 'item': ['a', 'b']}
...)
>>> recall = pd.DataFrame(
... {'subject': [1], 'list': [1], 'position': [1], 'item': ['b']}
...)
>>> fr.merge_lists(study, recall)

subject list item input output study recall repeat intrusion
0 1 1 a 1 NaN True False 0 False
1 1 1 b 2 1.0 True True 0 False

psifr.fr.pli_list_lag(df, max_lag)
List lag of prior-list intrusions.

Parameters

• df (pandas.DataFrame) – Merged study and recall data. See merge_free_recall. Must
have fields: subject, list, intrusion, prior_list. Lists must be numbered starting from 1 and
all lists must be included.

• max_lag (int) – Maximum list lag to consider. The intial max_lag lists for each subject
will be excluded so that all considered lags are possible for all included lists.

Returns results – For each subject and list lag, the proportion of intrusions at that lag, in the
results['prob'] column.

Return type pandas.DataFrame

4.2. Free Recall Analysis 29

Psifr, Release v0.3.0

Examples

>>> from psifr import fr
>>> raw = fr.sample_data('Morton2013')
>>> data = fr.merge_free_recall(raw)
>>> fr.pli_list_lag(data, 3)

count per_list prob
subject list_lag
1 1 7 0.155556 0.259259

2 5 0.111111 0.185185
3 0 0.000000 0.000000

2 1 9 0.200000 0.191489
2 2 0.044444 0.042553

...
46 2 1 0.022222 0.100000

3 0 0.000000 0.000000
47 1 5 0.111111 0.277778

2 1 0.022222 0.055556
3 0 0.000000 0.000000

[120 rows x 3 columns]

psifr.fr.plot_distance_crp(crp, min_samples=None, **facet_kws)
Plot response probability by distance bin.

Parameters

• crp (pandas.DataFrame) – Results from fr.distance_crp.

• min_samples (int) – Minimum number of samples a bin must have per subject to in-
clude in the plot.

• **facet_kws – Additional inputs to pass to seaborn.relplot.

psifr.fr.plot_lag_crp(recall, max_lag=5, split=True, **facet_kws)
Plot conditional response probability by lag.

Additional arguments are passed to seaborn.FacetGrid.

Parameters

• recall (pandas.DataFrame) – Results from calling lag_crp.

• max_lag (int) – Maximum absolute lag to plot.

• split (bool, optional) – If true, will plot as two separate lines with a gap at lag 0.

psifr.fr.plot_raster(df, hue='input', palette=None, marker='s', intrusion_color=None, orienta-
tion='horizontal', length=6, aspect=None, legend='auto', **facet_kws)

Plot recalls in a raster plot.

Parameters

• df (pandas.DataFrame) – Scored free recall data.

• hue (str or None, optional) – Column to use to set marker color.

• palette (optional) – Palette specification supported by Seaborn.

• marker (str, optional) – Marker code supported by Seaborn.

• intrusion_color (optional) – Color of intrusions.

30 Chapter 4. API Reference

Psifr, Release v0.3.0

• orientation ({'horizontal', 'vertical'}, optional) – Whether lists
should be stacked horizontally or vertically in the plot.

• length (float, optional) – Size of the plot dimension along which list varies.

• aspect (float, optional) – Aspect ratio of plot for lists over items.

• legend (str, optional) – Legend setting. See seaborn.scatterplot for details.

• facet_kws (optional) – Additional key words to pass to seaborn.FacetGrid.

psifr.fr.plot_spc(recall, **facet_kws)
Plot a serial position curve.

Additional arguments are passed to seaborn.relplot.

Parameters recall (pandas.DataFrame) – Results from calling spc.

psifr.fr.plot_swarm_error(data, x=None, y=None, swarm_color=None, swarm_size=5,
point_color='k', **facet_kws)

Plot points as a swarm plus mean with error bars.

Parameters

• data (pandas.DataFrame) – DataFrame with statistics to plot.

• x (str) – Name of variable to plot on x-axis.

• y (str) – Name of variable to plot on y-axis.

• swarm_color – Color for swarm plot points. May use any specification supported by
seaborn.

• swarm_size (float) – Size of swarm plot points.

• point_color – Color for the point plot (error bars).

• facet_kws – Additional keywords for the FacetGrid.

psifr.fr.pnr(df, item_query=None, test_key=None, test=None)
Probability of recall by serial position and output position.

Calculate probability of Nth recall, where N is each output position. Invalid recalls (repeats and intrusions) are
ignored and not counted toward output position.

Parameters

• df (pandas.DataFrame) – Merged study and recall data. See merge_lists. List length
is assumed to be the same for all lists within each subject. Must have fields: subject, list,
input, output, study, recall. Input position must be defined such that the first serial position
is 1, not 0.

• item_query (str, optional) – Query string to select items to include in the pool of
possible recalls to be examined. See pandas.DataFrame.query for allowed format.

• test_key (str, optional) – Name of column with labels to use when testing transi-
tions for inclusion.

• test (callable, optional) – Callable that takes in previous and current item values
and returns True for transitions that should be included.

Returns prob – Analysis results. Has fields: subject, output, input, prob, actual, possible. The prob
column for output x and input y indicates the probability of recalling input position y at output
position x. The actual and possible columns give the raw tallies for how many times an event
actually occurred and how many times it was possible given the recall sequence.

Return type pandas.DataFrame

4.2. Free Recall Analysis 31

Psifr, Release v0.3.0

See also:

plot_spc() Plot recall probability as a function of serial position.

spc() Overall recall probability by serial position.

Examples

>>> from psifr import fr
>>> raw = fr.sample_data('Morton2013')
>>> data = fr.merge_free_recall(raw)
>>> fr.pnr(data)

prob actual possible
subject output input
1 1 1 0.000000 0 48

2 0.020833 1 48
3 0.000000 0 48
4 0.000000 0 48
5 0.000000 0 48

...
47 24 20 NaN 0 0

21 NaN 0 0
22 NaN 0 0
23 NaN 0 0
24 NaN 0 0

[23040 rows x 3 columns]

psifr.fr.pool_index(trial_items, pool_items_list)
Get the index of each item in the full pool.

Parameters

• trial_items (pandas.Series) – The item presented on each trial.

• pool_items_list (list or numpy.ndarray) – List of items in the full pool.

Returns item_index – Index of each item in the pool. Trials with items not in the pool will be
<NA>.

Return type pandas.Series

Examples

>>> import pandas as pd
>>> from psifr import fr
>>> trial_items = pd.Series(['b', 'a', 'z', 'c', 'd'])
>>> pool_items_list = ['a', 'b', 'c', 'd', 'e', 'f']
>>> fr.pool_index(trial_items, pool_items_list)
0 1
1 0
2 <NA>
3 2
4 3
dtype: Int64

psifr.fr.reset_list(df)
Reset list index in a DataFrame.

32 Chapter 4. API Reference

Psifr, Release v0.3.0

Parameters df (pandas.DataFrame) – Raw or merged data. Must have subject and list fields.

Returns Data with a renumbered list field, starting from 1.

Return type pandas.DataFrame

Examples

>>> from psifr import fr
>>> subjects_list = [1, 1]
>>> study_lists = [['a', 'b'], ['c', 'd']]
>>> recall_lists = [['b'], ['c', 'd']]
>>> list_nos = [3, 4]
>>> raw = fr.table_from_lists(subjects_list, study_lists, recall_lists,
→˓lists=list_nos)
>>> raw

subject list trial_type position item
0 1 3 study 1 a
1 1 3 study 2 b
2 1 3 recall 1 b
3 1 4 study 1 c
4 1 4 study 2 d
5 1 4 recall 1 c
6 1 4 recall 2 d

>>> fr.reset_list(raw)
subject list trial_type position item

0 1 1 study 1 a
1 1 1 study 2 b
2 1 1 recall 1 b
3 1 2 study 1 c
4 1 2 study 2 d
5 1 2 recall 1 c
6 1 2 recall 2 d

psifr.fr.sample_data(study)
Read sample data.

psifr.fr.sample_distances(study)
Read sample distances.

psifr.fr.spc(df)
Serial position curve.

Parameters df (pandas.DataFrame) – Merged study and recall data. See merge_lists.

Returns

recall – Index includes:

subject [hashable] Subject identifier.

input [int] Serial position in the list.

Values are:

recall [float] Recall probability for each serial position.

Return type pandas.Series

See also:

4.2. Free Recall Analysis 33

Psifr, Release v0.3.0

plot_spc() Plot serial position curve results.

pnr() Probability of nth recall.

Examples

>>> from psifr import fr
>>> raw = fr.sample_data('Morton2013')
>>> data = fr.merge_free_recall(raw)
>>> fr.spc(data)

recall
subject input
1 1.0 0.541667

2.0 0.458333
3.0 0.625000
4.0 0.333333
5.0 0.437500

... ...
47 20.0 0.500000

21.0 0.770833
22.0 0.729167
23.0 0.895833
24.0 0.958333

[960 rows x 1 columns]

psifr.fr.split_lists(frame, phase, keys=None, names=None, item_query=None, as_list=False)
Convert free recall data from one phase to split format.

Parameters

• frame (pandas.DataFrame) – Free recall data with separate study and recall events.

• phase ({'study', 'recall', 'raw'}) – Phase of recall to split. If ‘raw’, all trials
will be included.

• keys (list of str, optional) – Data columns to include in the split data. If not
specified, all columns will be included.

• names (list of str, optional) – Name for each column in the returned split data.
Default is to use the same names as the input columns.

• item_query (str, optional) – Query string to select study trials to include. See
pandas.DataFrame.query for allowed format.

• as_list (bool, optional) – If true, each column will be output as a list; otherwise,
outputs will be numpy.ndarray.

Returns split – Data in split format. Each included column will be a key in the dictionary, with a
list of either numpy.ndarray (default) or lists, containing the values for that column.

Return type dict of str: list

See also:

table_from_lists() Convert list-format data to a table.

34 Chapter 4. API Reference

Psifr, Release v0.3.0

Examples

>>> from psifr import fr
>>> study = [['absence', 'hollow'], ['fountain', 'piano']]
>>> recall = [['absence'], ['piano', 'fountain']]
>>> raw = fr.table_from_lists([1, 1], study, recall)
>>> data = fr.merge_free_recall(raw)
>>> data

subject list item input output study recall repeat intrusion
→˓prior_list prior_input
0 1 1 absence 1 1.0 True True 0 False
→˓ NaN NaN
1 1 1 hollow 2 NaN True False 0 False
→˓ NaN NaN
2 1 2 fountain 1 2.0 True True 0 False
→˓ NaN NaN
3 1 2 piano 2 1.0 True True 0 False
→˓ NaN NaN

Get study events split by list, just including the list and item fields.

>>> fr.split_lists(data, 'study', keys=['list', 'item'], as_list=True)
{'list': [[1, 1], [2, 2]], 'item': [['absence', 'hollow'], ['fountain', 'piano']]}

Export recall events, split by list.

>>> fr.split_lists(data, 'recall', keys=['item'], as_list=True)
{'item': [['absence'], ['piano', 'fountain']]}

Raw events (i.e., events that haven’t been scored) can also be exported to list format.

>>> fr.split_lists(raw, 'raw', keys=['position'])
{'position': [array([1, 2, 1]), array([1, 2, 1, 2])]}

psifr.fr.table_from_lists(subjects, study, recall, lists=None, **kwargs)
Create table format data from list format data.

Parameters

• subjects (list of hashable) – Subject identifier for each list.

• study (list of list of hashable) – List of items for each study list.

• recall (list of list of hashable) – List of recalled items for each study list.

• lists (list of hashable, optional) – List of list numbers. If not specified,
lists for each subject will be numbered sequentially starting from one.

Returns data – Data in table format.

Return type pandas.DataFrame

See also:

split_lists() Split a table into list format.

4.2. Free Recall Analysis 35

Psifr, Release v0.3.0

Examples

>>> from psifr import fr
>>> subjects_list = [1, 1, 2, 2]
>>> study_lists = [['a', 'b'], ['c', 'd'], ['e', 'f'], ['g', 'h']]
>>> recall_lists = [['b'], ['d', 'c'], ['f', 'e'], []]
>>> fr.table_from_lists(subjects_list, study_lists, recall_lists)

subject list trial_type position item
0 1 1 study 1 a
1 1 1 study 2 b
2 1 1 recall 1 b
3 1 2 study 1 c
4 1 2 study 2 d
5 1 2 recall 1 d
6 1 2 recall 2 c
7 2 1 study 1 e
8 2 1 study 2 f
9 2 1 recall 1 f
10 2 1 recall 2 e
11 2 2 study 1 g
12 2 2 study 2 h

>>> subjects_list = [1, 1]
>>> study_lists = [['a', 'b'], ['c', 'd']]
>>> recall_lists = [['b'], ['d', 'c']]
>>> col1 = ([[1, 2], [1, 2]], [[2], [2, 1]])
>>> col2 = ([[1, 1], [2, 2]], None)
>>> fr.table_from_lists(subjects_list, study_lists, recall_lists, col1=col1,
→˓col2=col2)

subject list trial_type position item col1 col2
0 1 1 study 1 a 1 1.0
1 1 1 study 2 b 2 1.0
2 1 1 recall 1 b 2 NaN
3 1 2 study 1 c 1 2.0
4 1 2 study 2 d 2 2.0
5 1 2 recall 1 d 2 NaN
6 1 2 recall 2 c 1 NaN

36 Chapter 4. API Reference

PYTHON MODULE INDEX

p
psifr.fr, 19
psifr.transitions, 13

37

Psifr, Release v0.3.0

38 Python Module Index

INDEX

B
block_index() (in module psifr.fr), 19

C
category_crp() (in module psifr.fr), 19
check_data() (in module psifr.fr), 20
count_category() (in module psifr.transitions), 13
count_distance() (in module psifr.transitions), 14
count_lags() (in module psifr.transitions), 15
count_pairs() (in module psifr.transitions), 16

D
distance_crp() (in module psifr.fr), 21
distance_rank() (in module psifr.fr), 22

F
filter_data() (in module psifr.fr), 23

L
lag_crp() (in module psifr.fr), 24
lag_rank() (in module psifr.fr), 25

M
merge_free_recall() (in module psifr.fr), 26
merge_lists() (in module psifr.fr), 28

P
percentile_rank() (in module psifr.transitions), 16
pli_list_lag() (in module psifr.fr), 29
plot_distance_crp() (in module psifr.fr), 30
plot_lag_crp() (in module psifr.fr), 30
plot_raster() (in module psifr.fr), 30
plot_spc() (in module psifr.fr), 31
plot_swarm_error() (in module psifr.fr), 31
pnr() (in module psifr.fr), 31
pool_index() (in module psifr.fr), 32
psifr.fr (module), 19
psifr.transitions (module), 13

R
rank_distance() (in module psifr.transitions), 16

rank_lags() (in module psifr.transitions), 17
reset_list() (in module psifr.fr), 32

S
sample_data() (in module psifr.fr), 33
sample_distances() (in module psifr.fr), 33
spc() (in module psifr.fr), 33
split_lists() (in module psifr.fr), 34

T
table_from_lists() (in module psifr.fr), 35
transitions_masker() (in module

psifr.transitions), 18

39

	Installation
	User guide
	Importing data
	Scoring data
	Conditional response probability

	Tutorials
	API Reference
	Transitions
	Free Recall Analysis

	Python Module Index
	Index

