

Psifr documentation

In free recall, participants study a list of items and then name all of the
items they can remember in any order they choose. Many sophisticated analyses
have been developed to analyze data from free recall experiments, but these
analyses are often complicated and difficult to implement.

Psifr leverages the Pandas data analysis package to make precise and flexible
analysis of free recall data faster and easier.

	Installation

	User guide
	Importing data

	Scoring data

	Conditional response probability

	Tutorials

	API Reference
	Transitions

	Free Recall Analysis

Installation

First get a copy of the code from GitHub:

git clone git@github.com:mortonne/psifr.git

Then install:

cd psifr
python setup.py install

User guide

	Importing data
	Trial information

	Example

	Additional information

	Scoring data
	Scoring list recall

	Conditional response probability
	Actual and possible transitions

	The transitions masker

Importing data

In Psifr, free recall data are imported in the form of a “long” format
table. Each row corresponds to one study or recall event. Study
events include any time an item was presented to the participant.
Recall events correspond to any recall attempt; this includes repeats
of items there were already recalled and intrusions of items that
were not present in the study list.

This type of information is well represented in a CSV spreadsheet,
though any file format supported by pandas may be used for input. To
import from a CSV, use pandas. For example:

import pandas as pd
data = pd.read_csv("my_data.csv")

Trial information

The basic information that must be included for each event is the
following:

	subject
	Some code (numeric or string) indicating individual participants.
Must be unique for a given experiment. For example, sub-101.

	list
	Numeric code indicating individual lists. Must be unique within
subject.

	trial_type
	String indicating whether each event is a study event or a
recall event.

	position
	Integer indicating position within a given phase of the list. For
study events, this corresponds to input position (also
referred to as serial position). For recall events, this
corresponds to output position.

	item
	Individual thing being recalled, such as a word. May be specified
with text (e.g., pumpkin, Jack Nicholson) or a numeric code
(682, 121). Either way, the text or number must be unique
to that item. Text is easier to read and does not require any
additional information for interpretation and is therefore
preferred if available.

Example

Sample data

	subject

	list

	trial_type

	position

	item

	1

	1

	study

	1

	absence

	1

	1

	study

	2

	hollow

	1

	1

	study

	3

	pupil

	1

	1

	recall

	1

	pupil

	1

	1

	recall

	2

	absence

Additional information

Additional fields may be included in the data to indicate other
aspects of the experiment, such as presentation time, stimulus
category, experimental session, distraction length, etc. All of
these fields can then be used for analysis in Psifr.

Scoring data

After importing free recall data, we have a DataFrame with
a row for each study event and a row for each recall event. Next, we need to
score the data by matching study events with recall events.

Scoring list recall

First, let’s create a simple sample dataset with two lists:

In [1]: import pandas as pd

In [2]: data = pd.DataFrame(
 ...: {'subject': [1, 1, 1, 1, 1, 1,
 ...: 1, 1, 1, 1, 1, 1],
 ...: 'list': [1, 1, 1, 1, 1, 1,
 ...: 2, 2, 2, 2, 2, 2],
 ...: 'trial_type': ['study', 'study', 'study',
 ...: 'recall', 'recall', 'recall',
 ...: 'study', 'study', 'study',
 ...: 'recall', 'recall', 'recall'],
 ...: 'position': [1, 2, 3, 1, 2, 3,
 ...: 1, 2, 3, 1, 2, 3],
 ...: 'item': ['absence', 'hollow', 'pupil',
 ...: 'pupil', 'absence', 'empty',
 ...: 'fountain', 'piano', 'pillow',
 ...: 'pillow', 'fountain', 'pillow']})
 ...:

In [3]: data
Out[3]:
 subject list trial_type position item
0 1 1 study 1 absence
1 1 1 study 2 hollow
2 1 1 study 3 pupil
3 1 1 recall 1 pupil
4 1 1 recall 2 absence
5 1 1 recall 3 empty
6 1 2 study 1 fountain
7 1 2 study 2 piano
8 1 2 study 3 pillow
9 1 2 recall 1 pillow
10 1 2 recall 2 fountain
11 1 2 recall 3 pillow

Next, we’ll merge together the study and recall events by matching up
corresponding events:

In [4]: from psifr import fr

In [5]: study = data.query('trial_type == "study"').copy()

In [6]: recall = data.query('trial_type == "recall"').copy()

In [7]: merged = fr.merge_lists(study, recall)

In [8]: merged
Out[8]:
 subject list item input output recalled repeat intrusion
0 1 1 absence 1.0 2.0 True 0 False
1 1 1 hollow 2.0 NaN False 0 False
2 1 1 pupil 3.0 1.0 True 0 False
3 1 1 empty NaN 3.0 True 0 True
4 1 2 fountain 1.0 2.0 True 0 False
5 1 2 piano 2.0 NaN False 0 False
6 1 2 pillow 3.0 1.0 True 0 False
7 1 2 pillow 3.0 3.0 True 1 False

For each item, there is one row for each unique combination of input and
output position. For example, if an item is presented once in the list, but
is recalled multiple times, there is one row for each of the recall attempts.
Repeated recalls are indicated by the repeat column, which is greater than
zero for recalls of an item after the first.

Items that were not recalled have the recalled column set to False. Because
they were not recalled, they have no defined output position, so output is
set to NaN. Finally, intrusions have an output position but no input position
because they did not appear in the list. There is an intrusion field for
convenience to label these recall attempts.

Conditional response probability

A key advantage of free recall is that it provides information not only about
what items are recalled, but also the order in which they are recalled. A
number of analyses have been developed to charactize different influences on
recall order, such as the temporal order in which the items were presented at
study, the category of the items themselves, or the semantic similarity between
pairs of items.

Each conditional response probability (CRP) analysis involves calculating the
probability of some type of transition event. For the lag-CRP analysis,
transition events of interest are the different lags between serial positions
of items recalled adjacent to one another. Similar analyses focus not on
the serial position in which items are presented, but the properties of the
items themselves. A semantic-CRP analysis calculates the probability of
transitions between items in different semantic relatedness bins. A special
case of this analysis is when item pairs are placed into one of two bins,
depending on whether they are in the same stimulus category or not. In Psifr,
this is referred to as a category-CRP analysis.

Actual and possible transitions

Calculating a conditional response probability involves two parts: the frequency
at which a given event actually occurred in the data and frequency at which a
given event could have occurred. The frequency of possible events is
calculated conditional on the recalls that have been made leading up to each
transition. For example, a transition between item \(i\) and item \(j\)
is not considered “possible” in a CRP analysis if item \(i\) was never
recalled. The transition is also not considered “possible” if, when item
\(i\) is recalled, item \(j\) has already been recalled previously.

Repeated recall events are typically excluded from the counts of both actual
and possible transition events. That is, the transition event frequencies are
conditional on the transition not being either to or from a repeated item.

Calculating a CRP measure involves tallying how many transitions of a given
type were made during a free recall test. For example, one common measure is
the serial position lag between items. For a list of length \(N\), possible
lags are in the range \([-N+1, N-1]\). Because repeats are excluded, a lag
of zero is never possible. The count of actual and possible transitions for
each lag is calculated first, and then the CRP for each lag is calculated as
the actual count divided by the possible count.

The transitions masker

The psifr.transitions.transitions_masker() is a generator that makes
it simple to iterate over transitions while “masking” out events such as
intrusions of items not on the list and repeats of items that have already
been recalled.

On each step of the iterator, the previous, current, and possible items are
yielded. The previous
item is the item being transitioned from. The current item is the item being
transitioned to. The possible items includes an array of all items that
were valid to be recalled next, given the recall sequence up to that point (not
including the current item).

In [1]: from psifr.transitions import transitions_masker

In [2]: pool = [1, 2, 3, 4, 5, 6]

In [3]: recs = [6, 2, 3, 6, 1, 4]

In [4]: masker = transitions_masker(pool_items=pool, recall_items=recs,
 ...: pool_output=pool, recall_output=recs)
 ...:

In [5]: for prev, curr, poss in masker:
 ...: print(prev, curr, poss)
 ...:
6 2 [1 2 3 4 5]
2 3 [1 3 4 5]
1 4 [4 5]

Only valid transitions are yielded, so the code
for a specific analysis only needs to calculate the transition measure of
interest and count the number of actual and possible transitions in each bin
of interest.

Four inputs are required:

	pool_items
	List of identifiers for all items available for recall. Identifiers
can be anything that is unique to each item in the list (e.g., serial
position, a string representation of the item, an index in the stimulus
pool).

	recall_items
	List of identifiers for the sequence of recalls, in order. Valid recalls
must match an item in pool_items. Other items are considered intrusions.

	pool_output
	Output codes for each item in the pool. This should be whatever you need to
calculate your transition measure.

	recall_output
	Output codes for each recall in the sequence of recalls.

By using different values for these four inputs and defining different
transition measures, a wide range of analyses can be implemented.

Tutorials

See the psifr-notebooks [https://github.com/mortonne/psifr-notebooks] project for sample code.

API Reference

	Transitions

	Free Recall Analysis

Transitions

The transitions module contains utilties to iterate over and mask
transitions between recalled items. The
psifr.transitions.transitions_masker() does most of the work
here.

Module to analyze transitions during free recall.

	
psifr.transitions.count_category(pool_items, recall_items, pool_category, recall_category, pool_test=None, recall_test=None, test=None)

	Count within-category transitions.

	
psifr.transitions.count_lags(pool_items, recall_items, pool_test=None, recall_test=None, test=None)

	Count actual and possible serial position lags.

	Parameters

	
	pool_items (list) – List of the serial positions available for recall in each list.
Must match the serial position codes used in recall_items.

	recall_items (list) – List indicating the serial position of each recall in output
order (NaN for intrusions).

	pool_test (list, optional) – List of some test value for each item in the pool.

	recall_test (list, optional) – List of some test value for each recall attempt by output
position.

	test (callable) – Callable that evaluates each transition between items n and
n+1. Must take test values for items n and n+1 and return True
if a given transition should be included.

	
psifr.transitions.count_pairs(n_item, pool_items, recall_items, pool_test=None, recall_test=None, test=None)

	Count transitions between pairs of specific items.

	
psifr.transitions.transitions_masker(pool_items, recall_items, pool_output, recall_output, pool_test=None, recall_test=None, test=None)

	Iterate over transitions with masking.

Transitions are between a “previous” item and a “current” item.
Non-included transitions will be skipped. A transition is yielded
only if it matches the following conditions:

(1) Each item involved in the transition is in the pool. Items are
removed from the pool after they appear as the previous item.

(2) Optionally, an additional check is run based on test values
associated with the items in the transition. For example, this
could be used to only include transitions where the category of
the previous and current items is the same.

The masker will yield “output” values, which may be distinct from
the item identifiers used to determine item repeats.

	Parameters

	
	pool_items (list) – Items available for recall. Order does not matter. May contain
repeated values. Item identifiers must be unique within pool.

	recall_items (list) – Recalled items in output position order.

	pool_output (list) – Output values for pool items. Must be the same order as pool.

	recall_output (list) – Output values in output position order.

	pool_test (list, optional) – Test values for items available for recall. Must be the same
order as pool.

	recall_test (list, optional) – Test values for items in output position order.

	test (callable, optional) – Used to test whether individual transitions should be included,
based on test values.

test(prev, curr) - test for included transition

test(prev, poss) - test for included possible transition

	Yields

	
	prev (object) – Output value for the “from” item on this transition.

	curr (object) – Output value for the “to” item.

	poss (numpy.array) – Output values for all possible valid “to” items.

Free Recall Analysis

Utilities for working with free recall data.

	
psifr.fr.block_index(list_labels)

	Get index of each block in a list.

	
psifr.fr.check_data(df)

	Run checks on free recall data.

	Parameters

	df (pandas.DataFrame) –
	Contains one row for each trial (study and recall). Must have fields:
	
	subjectnumber or str
	Subject identifier.

	listnumber
	List identifier. This applies to both study and recall trials.

	trial_typestr
	Type of trial; may be ‘study’ or ‘recall’.

	positionnumber
	Position within the study list or recall sequence.

	itemstr
	Item that was either presented or recalled on this trial.

	
psifr.fr.get_recall_index(df, list_cols=None)

	Get recall input position index by list.

	
psifr.fr.get_study_value(df, column, list_cols=None)

	Get study column value by list.

	
psifr.fr.lag_crp(df, test_values=None, test=None, first_output=None)

	Lag-CRP for multiple subjects.

	Parameters

	
	df (pandas.DataFrame) – Merged study and recall data. See merge_lists. List length is
assumed to be the same for all lists within each subject.
Must have fields: subject, list, input, output, recalled.
Input position must be defined such that the first serial
position is 1, not 0.

	test_values (pandas.Series or column name, optional) – Column with labels to use when testing transitions for
inclusion.

	test (callable, optional) – Callable that takes in previous and current item values and
returns True for transitions that should be included.

	first_output (int, optional) – First output position to include when calculating transition
probabilities. Used to exclude initial outputs. Default is
to start at the first recall on each list.

	Returns

	results – Has fields:

	subjecthashable
	Results are separated by each subject.

	lagint
	Lag of input position between two adjacent recalls.

	probfloat
	Probability of each lag transition.

	actualint
	Total of actual made transitions at each lag.

	possibleint
	Total of times each lag was possible, given the prior
input position and the remaining items to be recalled.

	Return type

	pandas.DataFrame

	
psifr.fr.merge_lists(study, recall, merge_keys=None, list_keys=None, study_keys=None, recall_keys=None, position_key='position')

	Merge study and recall events together for each list.

	Parameters

	
	study (pandas.DataFrame) – Information about all study events. Should have one row for
each study event.

	recall (pandas.DataFrame) – Information about all recall events. Should have one row for
each recall attempt.

	merge_keys (list, optional) – Columns to use to designate events to merge. Default is
[‘subject’, ‘list’, ‘item’], which will merge events related to
the same item, but only within list.

	list_keys (list, optional) – Columns that apply to both study and recall events.

	study_keys (list, optional) – Columns that only apply to study events.

	recall_keys (list, optional) – Columns that only apply to recall events.

	position_key (str, optional) – Column indicating the position of each item in either the study
list or the recall sequence.

	Returns

	merged – Merged information about study and recall events. Each row
corresponds to one unique input/output pair.

The following columns will be added:

	inputint
	Position of each item in the input list (i.e., serial
position).

	outputint
	Position of each item in the recall sequence.

	recalledbool
	True for rows with an associated recall event.

	repeatint
	Number of times this recall event has been repeated (0 for
the first recall of an item).

	intrusionbool
	True for recalls that do not correspond to any study event.

	Return type

	pandas.DataFrame

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 psifr	

 	
 	
 psifr.fr	

 	
 	
 psifr.transitions	

Index

 B
 | C
 | G
 | L
 | M
 | P
 | T

B

 	
 	block_index() (in module psifr.fr)

C

 	
 	check_data() (in module psifr.fr)

 	count_category() (in module psifr.transitions)

 	
 	count_lags() (in module psifr.transitions)

 	count_pairs() (in module psifr.transitions)

G

 	
 	get_recall_index() (in module psifr.fr)

 	
 	get_study_value() (in module psifr.fr)

L

 	
 	lag_crp() (in module psifr.fr)

M

 	
 	merge_lists() (in module psifr.fr)

P

 	
 	psifr.fr (module)

 	
 	psifr.transitions (module)

T

 	
 	transitions_masker() (in module psifr.transitions)

 nav.xhtml

 Table of Contents

 		
 Psifr documentation

 		
 Installation

 		
 User guide

 		
 Importing data

 		
 Trial information

 		
 Example

 		
 Additional information

 		
 Scoring data

 		
 Scoring list recall

 		
 Conditional response probability

 		
 Actual and possible transitions

 		
 The transitions masker

 		
 Tutorials

 		
 API Reference

 		
 Transitions

 		
 Free Recall Analysis

_static/minus.png

_static/plus.png

_static/file.png

_static/logo.png

